• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.039 seconds

An Analysis for Price Determinants of Small and Medium-sized Office Buildings Using Data Mining Method in Gangnam-gu (데이터마이닝기법을 활용한 강남구 중소형 오피스빌딩의 매매가격 결정요인 분석)

  • Mun, Keun-Sik;Choi, Jae-Gyu;Lee, Hyun-seok
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.414-427
    • /
    • 2015
  • Most Studies for office market have focused on large-scale office buildings. There is, if any, a little research for small and medium-sized office buildings due to the lack of data. This study uses the self-searched and established 1,056 data in Gangnam-Gu, and estimates the data by not only linear regression model, but also data mining methods. The results provide investors with various information of price determinants, for small and medium-sized office buildings, comparing with large-scale office buildings. The important variables are street frontage condition, zoning of commercial area, distance to subway station, and so on.

Breaking character and natural image based CAPTCHA using feature classification (특징 분리를 통한 자연 배경을 지닌 글자 기반 CAPTCHA 공격)

  • Kim, Jaehwan;Kim, Suah;Kim, Hyoung Joong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1011-1019
    • /
    • 2015
  • CAPTCHA(Completely Automated Public Turing test to tell Computers and Humans Apart) is a test used in computing to distinguish whether or not the user is computer or human. Many web sites mostly use the character-based CAPTCHA consisting of digits and characters. Recently, with the development of OCR technology, simple character-based CAPTCHA are broken quite easily. As an alternative, many web sites add noise to make it harder for recognition. In this paper, we analyzed the most recent CAPTCHA, which incorporates the addition of the natural images to obfuscate the characters. We proposed an efficient method using support vector machine to separate the characters from the background image and use convolutional neural network to recognize each characters. As a result, 368 out of 1000 CAPTCHAs were correctly identified, it was demonstrated that the current CAPTCHA is not safe.

Background Noise Classification in Noisy Speech of Short Time Duration Using Improved Speech Parameter (개량된 음성매개변수를 사용한 지속시간이 짧은 잡음음성 중의 배경잡음 분류)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1673-1678
    • /
    • 2016
  • In the area of the speech recognition processing, background noises are caused the incorrect response to the speech input, therefore the speech recognition rates are decreased by the background noises. Accordingly, a more high level noise processing techniques are required since these kinds of noise countermeasures are not simple. Therefore, this paper proposes an algorithm to distinguish between the stationary background noises or non-stationary background noises and the speech signal having short time duration in the noisy environments. The proposed algorithm uses the characteristic parameter of the improved speech signal as an important measure in order to distinguish different types of the background noises and the speech signals. Next, this algorithm estimates various kinds of the background noises using a multi-layer perceptron neural network. In this experiment, it was experimentally clear the estimation of the background noises and the speech signals.

Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences (단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측)

  • Chi, Sang-mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1816-1821
    • /
    • 2016
  • Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant (발전플랜트 성능데이터 학습에 의한 발전기 출력 추정 모델)

  • Yang, HacJin;Kim, Seong Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8753-8759
    • /
    • 2015
  • Establishment of analysis procedures and validated performance measurements for generator output is required to maintain stable management of generator output in turbine power generation cycle. We developed turbine expansion model and measurement validation model for the performance calculation of generator using turbine output based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). We also developed verification model for uncertain measurement data related to the turbine and generator output. Although the model in previous researches was developed using artificial neural network and kernel regression, the verification model in this paper was based on algorithms through Support Vector Machine (SVM) model to overcome the problems of unmeasured data. The selection procedures of related variables and data window for verification learning was also developed. The model reveals suitability in the estimation procss as the learning error was in the range of about 1%. The learning model can provide validated estimations for corrective performance analysis of turbine cycle output using the predictions of measurement data loss.

Identification of the Bulk Behavior of Coatings by Nanoindentation Test and FE-Simulation and Its Application to Forming Analysis of the Coated Steel Sheet (나노인덴테이션 시험과 유한요소해석을 이용한 자동차 도금 강판의 도금층 체적 거동결정 및 성형해석 적용)

  • Lee, Jung-Min;Lee, Kyoung-Su;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1425-1432
    • /
    • 2006
  • Coating layers on a coated sheet steel frequently affect distributions of strain rate of sheets and deteriorate the frictional characteristics between sheets and tools in sheet metal forming. Thus, it is important to identify the deformation behavior of these coatings to ensure the success of the sheet forming operation. In this study, the technique using nano-indentation test, FE-simulation and Artificial Neural Network(ANN) were proposed to determine the power law stress-strain behavior of coating layer and the power law behavior of extracted coating layers was examined using FE-simulation of drawing and nano-indentation process. Also, deep drawing test was performed to estimate the formability and frictional characteristic of coated sheet, which was calculated using the linear relationship between drawing force and blank holding force obtained from the deep drawing test. FE-simulations of the drawing process were respectively carried out for single-behavior FE-model having one stress-strain behavior and for layer-behavior FE-model which consist of coating and substrate separately. The results of simulations showed that layer-behavior model can predict drawing forces with more accuracy in comparison with single-behavior model. Also, mean friction coefficients used in FE-simulation signify the value that can occur maximum drawing force in a drawing test.

Development of Vehicle Classification Algorithm Using Magnetometer Detector (자석검지기를 이용한 차종인식 알고리즘개발)

  • 김수희;오영태;조형기;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.111-124
    • /
    • 1999
  • The Purpose of this thesis is to develop a vehicle classification algorithm using single Magnetometer detector during presence time of vehicle detection and is to examine a held application from field test. We collected data using Magnetometer detector on freeway and used digital data to change voltage values according to magnetic flux density in analysis. We collected these datum during the presence time and then obtained characteristics from wave form in these datum. Based on these characteristics, We used the following three methods for this a1gorithm :1. Template Matching Method,2. Neural Network Method using Back-propagation Algorithm 3. Complex Method using changed slope points and mixing method 1, 2. Of course, Before processing of over three methods, These data were processed normalizing by 20, 40 of size in only X axis and moving average by 0, 3, 4, 5 of size. Vehicle classification were Processed in three steps ; 2, 3, 5 types classification. In 2 types vehicle classification, recognition rate is 83% by template matching method.

  • PDF

The Incremental Learning Method of Variable Slope Backpropagation Algorithm Using Representative Pattern (대표 패턴을 사용한 가변 기울기 역전도 알고리즘의 점진적 학습방법)

  • 심범식;윤충화
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.1
    • /
    • pp.95-112
    • /
    • 1998
  • The Error Backpropagation algorithm is widely used in various areas such as associative memory, speech recognition, pattern recognition, robotics and so on. However, if and when a new leaning pattern has to be added in order to drill, it will have to accomplish a new learning with all previous learning pattern and added pattern from the very beginning. Somehow, it brings about a result which is that the more it increases the number of pattern, the longer it geometrically progress the time required by leaning. Therefore, a so-called Incremental Learning Method has to be solved the point at issue all by means in case of situation which is periodically and additionally learned by numerous data. In this study, not only the existing neural network construction is still remained, but it also suggests a method which means executing through added leaning by a model pattern. Eventually, for a efficiency of suggested technique, both Monk's data and Iris data are applied to make use of benchmark on machine learning field.

  • PDF

Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model (SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가)

  • Park, Min-Ji;Shin, Hyung-Jin;Park, Jong-Yoon;Kang, Boo-Sik;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.