• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

Collaborative Filtering based Recommender System using Restricted Boltzmann Machines

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.101-108
    • /
    • 2020
  • Recommender system is a must-have feature of e-commerce, since it provides customers with convenience in selecting products. Collaborative filtering is a widely-used and representative technique, where it gives recommendation lists of products preferred by other users or preferred by the current user in the past. Recently, researches on the recommendation system using deep learning artificial intelligence technologies are actively being conducted to achieve performance improvement. This study develops a collaborative filtering based recommender system using restricted Boltzmann machines of the deep learning technology by utilizing user ratings. Moreover, a learning parameter update algorithm is proposed for learning efficiency and performance. Performance evaluation of the proposed system is made through experimental analysis and comparison with conventional collaborative filtering methods. It is found that the proposed algorithm yields superior performance than the basic restricted Boltzmann machines.

CNN-Based Novelty Detection with Effectively Incorporating Document-Level Information (효과적인 문서 수준의 정보를 이용한 합성곱 신경망 기반의 신규성 탐지)

  • Jo, Seongung;Oh, Heung-Seon;Im, Sanghun;Kim, Seonho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.231-238
    • /
    • 2020
  • With a large number of documents appearing on the web, document-level novelty detection has become important since it can reduce the efforts of finding novel documents by discarding documents sharing redundant information already seen. A recent work proposed a convolutional neural network (CNN)-based novelty detection model with significant performance improvements. We observed that it has a restriction of using document-level information in determining novelty but assumed that the document-level information is more important. As a solution, this paper proposed two methods of effectively incorporating document-level information using a CNN-based novelty detection model. Our methods focus on constructing a feature vector of a target document to be classified by extracting relative information between the target document and source documents given as evidence. A series of experiments showed the superiority of our methods on a standard benchmark collection, TAP-DLND 1.0.

Development of Gas Measurement System for the Harmful Gases at Livestock Barn (축산생육환경 유해가스 모니터링을 위한 무선가스측정시스템 개발)

  • Kim, Young Wung;Paik, Seung Hyun;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.314-321
    • /
    • 2012
  • Harmful gases which are generated from various rout at growth environment of livestock ban have a direct and indirect bad influence to the livestock and farmers, and also step-up breeding density and long-term exposure to the sealed environment of winter can be fatal. In this paper, we propose a gas measurement system for monitoring gases of ammonia, hydrogen sulfide, volatile organic compounds, etc. which arise from the muck. The measurement system consist of both wireless gas sensor node and gas recognition software using a Fuzzy Min-Max neural network. To evaluate the performance of suggested system, gas measurement experiments are performed in laboratory environment by using the designed wireless gas sensor node. And we show the performance through classification test for the target gases by the designed gas recognition software.

Improved CNN Algorithm for Object Detection in Large Images

  • Yang, Seong Bong;Lee, Soo Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Conventional Convolutional Neural Network(CNN) algorithms have limitations in detecting small objects in large image. In this paper, we propose an improved model which is based on Region Of Interest(ROI) selection and image dividing technique. We prepared YOLOv3 / Faster R-CNN algorithms which are transfer-learned by airfield and aircraft datasets. Also we prepared large images for testing. In order to verify our model, we selected airfield area from large image as ROI first and divided it in two power n orders. Then we compared the aircraft detection rates by number of divisions. We could get the best size of divided image pieces for efficient small object detection derived from the comparison of aircraft detection rates. As a result, we could verify that the improved CNN algorithm can detect small object in large images.

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

A Development and Application of the Teaching and Learning Model of Artificial Intelligence Education for Elementary Students (초등학생의 인공지능 교육을 위한 교수 학습 모델 개발 및 적용)

  • Kim, Kapsu;Park, Youngki
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.139-149
    • /
    • 2017
  • Artificial intelligence education is very important in the 21st century knowledge information society. Even if it is very important to understand artificial intelligence and practice computer programming in computer education in the fourth industrial revolution, but there is no teaching and learning model to understand artificial intelligence and computer programming education. In this paper, the proposed model consists of problem understanding step, data organizing step, artificial intelligence model setting step, programming step, and report writing step. At the program step, students can choose to copy, transform, create, and challenge steps to their level. In this study, the validity of the model was proved by the Delphi evaluation of elementary school teachers. The results of this study provide a good opportunity for elementary school students to practice artificial intelligence programs.

Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection (최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting feature point based on only R peak through optimal R wave. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 94.85% in PVC classification.

A Smart Refrigerator System based on Internet of Things (IoT 기반 스마트 냉장고 시스템)

  • Kim, Hanjin;Lee, Seunggi;Kim, Won-Tae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.156-161
    • /
    • 2018
  • Recently, as the population rapidly increases, food shortages and waste are emerging serious problem. In order to solve this problem, various countries and enterprises are trying research and product development such as a study of consumers' purchasing patterns of food and a development of smart refrigerator using IoT technology. However, the smart refrigerators which currently sold have high price issue and another waste due to malfunction and breakage by complicated configurations. In this paper, we proposed a low-cost smart refrigerator system based on IoT for solving the problem and efficient management of ingredients. The system recognizes and registers ingredients through QR code, image recognition, and speech recognition, and can provide various services of the smart refrigerator. In order to improve an accuracy of image recognition, we used a model using a deep learning algorithm and proved that it is possible to register ingredients accurately.

Improved ADALINE Harmonics Extraction Algorithm for Boosting Performance of Photovoltaic Shunt Active Power Filter under Dynamic Operations

  • Mohd Zainuri, Muhammad Ammirrul Atiqi;Radzi, Mohd Amran Mohd;Soh, Azura Che;Mariun, Norman;Rahim, Nasrudin Abd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1714-1728
    • /
    • 2016
  • This paper presents improved harmonics extraction based on Adaptive Linear Neuron (ADALINE) algorithm for single phase photovoltaic (PV) shunt active power filter (SAPF). The proposed algorithm, named later as Improved ADALINE, contributes to better performance by removing cosine factor and sum of element that are considered as unnecessary features inside the existing algorithm, known as Modified Widrow-Hoff (W-H) ADALINE. A new updating technique, named as Fundamental Active Current, is introduced to replace the role of the weight factor inside the previous updating technique. For evaluation and comparison purposes, both proposed and existing algorithms have been developed. The PV SAPF with both algorithms was simulated in MATLAB-Simulink respectively, with and without operation or connection of PV. For hardware implementation, laboratory prototype has been developed and the proposed algorithm was programmed in TMS320F28335 DSP board. Steady state operation and three critical dynamic operations, which involve change of nonlinear loads, off-on operation between PV and SAPF, and change of irradiances, were carried out for performance evaluation. From the results and analysis, the Improved ADALINE algorithm shows the best performances with low total harmonic distortion, fast response time and high source power reduction. It performs well in both steady state and dynamic operations as compared to the Modified W-H ADALINE algorithm.

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.