• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Super Resolution Performance Analysis of GAN according to Feature Extractor (특징 추출기에 따른 SRGAN의 초해상 성능 분석)

  • Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Jung, Se-Hoon;Sim, Chun-Bo
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.501-503
    • /
    • 2022
  • 초해상이란 해상도가 낮은 영상을 해상도가 높은 영상으로 합성하는 기술이다. 딥러닝은 영상의 해상도를 높이는 초해상 기술에도 응용되며 실현은 2아4년에 발표된 SRCNN(Super Resolution Convolutional Neural Network) 모델로부터 시작됐다. 이후 오토인코더 (Autoencoders) 구조로는 SRCAE(Super Resolution Convolutional Autoencoders), 합성된 영상을 실제 영상과 통계적으로 구분되지 않도록 강제하는 GAN (Generative Adversarial Networks) 구조로는 SRGAN(Super Resolution Generative Adversarial Networks) 모델이 발표됐다. 모두 SRCNN의 성능을 웃도는 모델들이나 그중 가장 높은 성능을 끌어내는 SRGAN 조차 아직 완벽한 성능을 내진 못한다. 본 논문에서는 SRGAN의 성능을 개선하기 위해 사전 훈련된 특징 추출기(Pre-trained Feature Extractor) VGG(Visual Geometry Group)-19 모델을 변경하고, 기존 모델과 성능을 비교한다. 실험 결과, VGG-19 모델보다 윤곽이 뚜렷하고, 실제 영상과 더 가까운 영상을 합성할 수 있는 모델을 발견할 수 있을 것으로 기대된다.

Classification of Construction Worker's Activities Towards Collective Sensing for Safety Hazards

  • Yang, Kanghyeok;Ahn, Changbum R.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.80-88
    • /
    • 2017
  • Although hazard identification is one of the most important steps of safety management process, numerous hazards remain unidentified in the construction workplace due to the dynamic environment of the construction site and the lack of available resource for visual inspection. To this end, our previous study proposed the collective sensing approach for safety hazard identification and showed the feasibility of identifying hazards by capturing collective abnormalities in workers' walking patterns. However, workers generally performed different activities during the construction task in the workplace. Thereby, an additional process that can identify the worker's walking activity is necessary to utilize the proposed hazard identification approach in real world settings. In this context, this study investigated the feasibility of identifying walking activities during construction task using Wearable Inertial Measurement Units (WIMU) attached to the worker's ankle. This study simulated the indoor masonry work for data collection and investigated the classification performance with three different machine learning algorithms (i.e., Decision Tree, Neural Network, and Support Vector Machine). The analysis results showed the feasibility of identifying worker's activities including walking activity using an ankle-attached WIMU. Moreover, the finding of this study will help to enhance the performance of activity recognition and hazard identification in construction.

  • PDF

Neural network model for turbulent jet (난류 제트 신경망 모델)

  • Choi, Seongeun;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.247-247
    • /
    • 2022
  • 제트류는 복잡한 흐름 중 하나로 다양한 크기의 에디가 다양한 운동량을 가지고 있다. 이러한 제트류를 구현하기 위해서는 난류 운동 에너지 등 제트류의 특성을 잘 반영하여야 한다. 제트를 구현하기 위해서는 수리학적 모델, 현장 실험 등 많은 방법이 있으며, 본 연구에서는 상대적으로 공간, 시간적 비용이 적게 드는 수치해석 방법을 사용하여 연구를 진행하였다. 대표적인 수치해석방법에는 DNS(Direct Numerical Simulation), LES(Large Eddy Simulation), RANS(Reynolds Averaged Navier Stokes) 등이 있다. RANS는 시간 평균 흐름 특성만 산출하며 제트의 복잡성을 재현하는 데 한계가 있어, 본 연구는 DNS와 LES 모델을 이용하여 제트류를 구현하는 것에 초점을 맞추었다. DNS는 해당 격자에서 발생하는 모든 에디를 직접 해석 때문에 난류 모델링이 필요하지 않지만, 많은 수의 그리드가 필요하여 수치해석 시 소요시간이 긴 편이다. LES는 대규모 에디는 직접 해석하지만 일정 크기 이하의 소용돌이를 해석하기 위해서 모델이 필요하다. 따라서 서브 그리드 모델에 따라 약간 다른 결과를 보인다. 이러한 문제점을 해결하기 위해 본 연구에서는 LES의 기존 서브 그리드 모델을 사용하지 않고 신경망 모델로 학습한 DNS 결과를 활용하는 방법을 제안한다. 우선 DNS와 LES 모델을 사용하여 에너지 스펙트럼을 비교하여 서브 그리드 모델이 시작하는 파수를 찾는다. 이후 특정 파수 아래의 작은 에디를 모사할 적절한 신경망 모델을 결정하여 DNS의 작은 에디를 신경망 알고리즘이 모사할 수 있도록 학습시킨다. 이후 기존 서브 그리드 모델을 사용하지 않고 학습된 신경망 알고리즘을 사용한 LES 모델이 모사한 제트류와 실제 DNS 모델을 사용한 제트류를 비교 및 평가한다.

  • PDF

Evaluation performance of machine learning in merging multiple satellite-based precipitation with gauge observation data

  • Nhuyen, Giang V.;Le, Xuan-hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.143-143
    • /
    • 2022
  • Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.

  • PDF

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

Tack Coat Inspection Using Unmanned Aerial Vehicle and Deep Learning

  • da Silva, Aida;Dai, Fei;Zhu, Zhenhua
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.784-791
    • /
    • 2022
  • Tack coat is a thin layer of asphalt between the existing pavement and asphalt overlay. During construction, insufficient tack coat layering can later cause surface defects such as slippage, shoving, and rutting. This paper proposed a method for tack coat inspection improvement using an unmanned aerial vehicle (UAV) and deep learning neural network for automatic non-uniform assessment of the applied tack coat area. In this method, the drone-captured images are exploited for assessment using a combination of Mask R-CNN and Grey Level Co-occurrence Matrix (GLCM). Mask R-CNN is utilized to detect the tack coat region and segment the region of interest from the surroundings. GLCM is used to analyze the texture of the segmented region and measure the uniformity and non-uniformity of the tack coat on the existing pavements. The results of the field experiment showed both the intersection over union of Mask R-CNN and the non-uniformity measured by GLCM were promising with respect to their accuracy. The proposed method is automatic and cost-efficient, which would be of value to state Departments of Transportation for better management of their work in pavement construction and rehabilitation.

  • PDF

Implementation of hand motion recognition-based rock-paper-scissors game using ResNet50 transfer learning (ResNet50 전이학습을 활용한 손동작 인식 기반 가위바위보 게임 구현)

  • Park, Changjoon;Kim, Changki;Son, Seongkyu;Lee, Kyoungjin;Yoo, Heekyung;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.77-82
    • /
    • 2022
  • GUI(Graphical User Interface)를 대신하는 차세대 인터페이스로서 NUI(Natural User Interace)에 기대가 모이는 것은 자연스러운 흐름이다. 본 연구는 NUI의 손가락 관절을 포함한 손동작 전체를 인식시키기 위해 웹캠과 카메라를 활용하여 다양한 배경과 각도의 손동작 데이터를 수집한다. 수집된 데이터는 전처리를 거쳐 데이터셋을 구축하며, ResNet50 모델을 활용하여 전이학습한 합성곱 신경망(Convolutional Neural Network) 알고리즘 분류기를 설계한다. 구축한 데이터셋을 입력시켜 분류학습 및 예측을 진행하며, 실시간 영상에서 인식되는 손동작을 설계한 모델에 입력시켜 나온 결과를 통해 가위바위보 게임을 구현한다.

  • PDF

Estimation of lightweight aggregate concrete characteristics using a novel stacking ensemble approach

  • Kaloop, Mosbeh R.;Bardhan, Abidhan;Hu, Jong Wan;Abd-Elrahman, Mohamed
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.499-512
    • /
    • 2022
  • This study investigates the efficiency of ensemble machine learning for predicting the lightweight-aggregate concrete (LWC) characteristics. A stacking ensemble (STEN) approach was proposed to estimate the dry density (DD) and 28 days compressive strength (Fc-28) of LWC using two meta-models called random forest regressor (RFR) and extra tree regressor (ETR), and two novel ensemble models called STEN-RFR and STEN-ETR, were constructed. Four standalone machine learning models including artificial neural network, gradient boosting regression, K neighbor regression, and support vector regression were used to compare the performance of the proposed models. For this purpose, a sum of 140 LWC mixtures with 21 influencing parameters for producing LWC with a density less than 1000 kg/m3, were used. Based on the experimental results with multiple performance criteria, it can be concluded that the proposed STEN-ETR model can be used to estimate the DD and Fc-28 of LWC. Moreover, the STEN-ETR approach was found to be a significant technique in prediction DD and Fc-28 of LWC with minimal prediction error. In the validation phase, the accuracy of the proposed STEN-ETR model in predicting DD and Fc-28 was found to be 96.79% and 81.50%, respectively. In addition, the significance of cement, water-cement ratio, silica fume, and aggregate with expanded glass variables is efficient in modeling DD and Fc-28 of LWC.

Proposal of DNN-based predictive model for calculating concrete mixing proportions accroding to admixture (혼화재 혼입에 따른 콘크리트 배합요소 산정을 위한 DNN 기반의 예측모델 제안)

  • Choi, Ju-Hee;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.57-58
    • /
    • 2022
  • Concrete mix design is used as essential data for the quality of concrete, analysis of structures, and stable use of sustainable structures. However, since most of the formulation design is established based on the experience of experts, there is a lack of data to base it on. are suffering Accordingly, in this study, the purpose of this study is to build a predictive model to use the concrete mixing factor as basic data for calculation using the DNN technique. As for the data set for DNN model learning, OPC and ternary concrete data were collected according to the presence or absence of admixture, respectively, and the model was separated for OPC and ternary concrete, and training was carried out. In addition, by varying the number of hidden layers of the DNN model, the prediction performance was evaluated according to the model structure. The higher the number of hidden layers in the model, the higher the predictive performance for the prediction of the mixing elements except for the compressive strength factor set as the output value, and the ternary concrete model showed higher performance than the OPC. This is expected because the data set used when training the model also affected the training.

  • PDF

Identifying Correction Range of Geomagnetic Field for Indoor Positioning of Workers at Construction Site (건설현장 내 작업자 실내측위를 위한 지구자기장 보정 범위 도출)

  • Kim, Hyeonmin;Ahn, Heejae;Lee, Changsu;Kim, Harim;Ko, Youngwoong;Cho, HunHee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.93-94
    • /
    • 2022
  • Although various studies about indoor positioning systems, such as beacon and Wifi, have been conducting for indoor positioning of workers at construction sites, these systems have limitations in terms of accuracy or economics. To overcome these limitations, geomagnetic field sequence-based indoor positioning technology can be a good alternative. However, it is necessary to correct the geomagnetic field near the construction material stocking area since the geomagnetic field can be distorted near construction materials such as rebars. Therefore, this study conducted an experiment for identifying correction range of geomagnetic field near the construction material stocking area. It was analyzed that the geomagnetic field should be corrected up to 60cm in the horizontal direction from the stocking point if the height of stocking area for rebars is 40cm or more. This study can be used for important reference for development of geomagnetic field sequence-based indoor positioning technology suitable for construction sites.

  • PDF