• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.04 seconds

Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride (딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현)

  • Son, Seung-Yong;Kim, Young Mok;Choi, Doo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).

A Study on Surface Defect Detection Model of 3D Printing Bone Plate Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 3D프린팅 골절합용 판의 표면 결함 탐지 모델에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.68-73
    • /
    • 2022
  • In this study, we produced the surface defect detection model to automatically detect defect bone plates using a deep learning algorithm. Bone plates with a width and a length of 50 mm are most used for fracture treatment. Normal bone plates and defective bone plates were printed on the 3d printer. Normal bone plates and defective bone plates were photographed with 1,080 pixels using the webcam. The total quantity of collected images was 500. 300 images were used to learn the defect detection model. 200 images were used to test the defect detection model. The mAP(Mean Average Precision) method was used to evaluate the performance of the surface defect detection model. As the result of confirming the performance of the surface defect detection model, the detection accuracy was 96.3 %.

A Computerized Doughty Predictor Framework for Corona Virus Disease: Combined Deep Learning based Approach

  • P, Ramya;Babu S, Venkatesh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2018-2043
    • /
    • 2022
  • Nowadays, COVID-19 infections are influencing our daily lives which have spread globally. The major symptoms' of COVID-19 are dry cough, sore throat, and fever which in turn to critical complications like multi organs failure, acute respiratory distress syndrome, etc. Therefore, to hinder the spread of COVID-19, a Computerized Doughty Predictor Framework (CDPF) is developed to yield benefits in monitoring the progression of disease from Chest CT images which will reduce the mortality rates significantly. The proposed framework CDPF employs Convolutional Neural Network (CNN) as a feature extractor to extract the features from CT images. Subsequently, the extracted features are fed into the Adaptive Dragonfly Algorithm (ADA) to extract the most significant features which will smoothly drive the diagnosing of the COVID and Non-COVID cases with the support of Doughty Learners (DL). This paper uses the publicly available SARS-CoV-2 and Github COVID CT dataset which contains 2482 and 812 CT images with two class labels COVID+ and COVI-. The performance of CDPF is evaluated against existing state of art approaches, which shows the superiority of CDPF with the diagnosis accuracy of about 99.76%.

Prediction of Laser Process Parameters using Bead Image Data (비드 이미지 데이터를 활용한 레이저 공정변수 예측)

  • Jeon, Ye-Rang;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2022
  • In this study reports experiments were conducted to determine the quality of weld beads of different materials, Al and Cu. Among the lasers used to make battery cells for electric vehicles, non-destructive testing was performed using deep learning to determine the quality of beads welded with the ARM laser. Deep learning was performed using AlexNet algorithm with a convolutional neural network structure. The results of quality identification were divided into good and bad, and the result value was derived that all the results were in agreement with 94% or more. Overall, the best welding quality was obtained in the experiment for the fixed ring beam output/variable center beam output, in the case of the fixed beam (ring beam) 500W and variable beam (center beam) 1,050W; weld bead failure was seldom observed. The tensile force test to confirm the reliability of welding reported an average tensile force of 2.5kgf/mm or more in all sections.

Prediction of Air Exchange Performance of an Air Purifier by Installation Location using Artificial Neural Network (인공신경망 기반 공기정화기 설치위치에 따른 공기교환성능 예측)

  • Kim, Na Kyong;Kang, Dong Hee;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • Air purifiers can be placed where the air cleaning is required, making it easy to manage indoor air quality. The position of the air purifier affects the indoor airflow pattern, resulting in different air cleaning efficiency. Many efforts and strategies have been examined through numerical simulations and experiments to find the proper location of the air purifier, but problems still remain due to the various geometrical indoor spaces and arrangements. Herein, we develop an artificial intelligence model to predict the performance of an air purifier depending on the installation location. To obtain the training data, numerical simulations were performed on the different locations of the air purifiers and airflow patterns. The trained artificial intelligence model predicted the air exchange performance depending on the installation location of the air purifier with a prediction accuracy of 92%.

Wastewater Treatment Plant Data Analysis Using Neural Network (신경망 분석을 활용한 하수처리장 데이터 분석 기법 연구)

  • Seo, Jeong-sig;Kim, Tae-wook;Lee, Hae-kag;Youn, Jong-ho
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.555-567
    • /
    • 2022
  • With the introduction of the tele-monitoring system (TMS) in South Korea, monitoring of the concentration of pollutants discharged from nationwide water quality TMS attachments is possible. In addition, the Ministry of Environment is implementing a smart sewage system program that combines ICT technology with wastewater treatment plants. Thus, many institutions are adopting the automatic operation technique which uses process operation factors and TMS data of sewage treatment plants. As a part of the preliminary study, a multilayer perceptron (MLP) analysis method was applied to TMS data to identify predictability degree. TMS data were designated as independent variables, and each pollutant was considered as an independent variables. To verify the validity of the prediction, root mean square error analysis was conducted. TMS data from two public sewage treatment plants in Chungnam were used. The values of RMSE in SS, T-N, and COD predictions (excluding T-P) in treatment plant A showed an error range of 10%, and in the case of treatment plant B, all items showed an error exceeding 20%. If the total amount of data used MLP analysis increases, the predictability of MLP analysis is expected to increase further.

Multi-gene genetic programming for the prediction of the compressive strength of concrete mixtures

  • Ghahremani, Behzad;Rizzo, Piervincenzo
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • In this article, Multi-Gene Genetic Programming (MGGP) is proposed for the estimation of the compressive strength of concrete. MGGP is known to be a powerful algorithm able to find a relationship between certain input space features and a desired output vector. With respect to most conventional machine learning algorithms, which are often used as "black boxes" that do not provide a mathematical formulation of the output-input relationship, MGGP is able to identify a closed-form formula for the input-output relationship. In the study presented in this article, MGPP was used to predict the compressive strength of plain concrete, concrete with fly ash, and concrete with furnace slag. A formula was extracted for each mixture and the performance and the accuracy of the predictions were compared to the results of Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) algorithms, which are conventional and well-established machine learning techniques. The results of the study showed that MGGP can achieve a desirable performance, as the coefficients of determination for plain concrete, concrete with ash, and concrete with slag from the testing phase were equal to 0.928, 0.906, 0.890, respectively. In addition, it was found that MGGP outperforms ELM in all cases and its' accuracy is slightly less than ANN's accuracy. However, MGGP models are practical and easy-to-use since they extract closed-form formulas that may be implemented and used for the prediction of compressive strength.

Estimation of various amounts of kaolinite on concrete alkali-silica reactions using different machine learning methods

  • Aflatoonian, Moein;Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.79-92
    • /
    • 2022
  • In this paper, the impact of a vernacular pozzolanic kaolinite mine on concrete alkali-silica reaction and strength has been evaluated. For making the samples, kaolinite powder with various levels has been used in the quality specification test of aggregates based on the ASTM C1260 standard in order to investigate the effect of kaolinite particles on reducing the reaction of the mortar bars. The compressive strength, X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) experiments have been performed on concrete specimens. The obtained results show that addition of kaolinite powder to concrete will cause a pozzolanic reaction and decrease the permeability of concrete samples comparing to the reference concrete specimen. Further, various machine learning methods have been used to predict ASR-induced expansion per different amounts of kaolinite. In the process of modeling methods, optimal method is considered to have the lowest mean square error (MSE) simultaneous to having the highest correlation coefficient (R). Therefore, to evaluate the efficiency of the proposed model, the results of the support vector machine (SVM) method were compared with the decision tree method, regression analysis and neural network algorithm. The results of comparison of forecasting tools showed that support vector machines have outperformed the results of other methods. Therefore, the support vector machine method can be mentioned as an effective approach to predict ASR-induced expansion.

NAAL: Software for controlling heterogeneous IoT devices based on neuromorphic architecture abstraction (NAAL: 뉴로모픽 아키텍처 추상화 기반 이기종 IoT 기기 제어용 소프트웨어)

  • Cho, Jinsung;Kim, Bongjae
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2022
  • Neuromorphic computing generally shows significantly better power, area, and speed performance than neural network computation using CPU and GPU. These characteristics are suitable for resource-constrained IoT environments where energy consumption is important. However, there is a problem in that it is necessary to modify the source code for environment setting and application operation according to heterogeneous IoT devices that support neuromorphic computing. To solve these problems, NAAL was proposed and implemented in this paper. NAAL provides functions necessary for IoT device control and neuromorphic architecture abstraction and inference model operation in various heterogeneous IoT device environments based on common APIs of NAAL. NAAL has the advantage of enabling additional support for new heterogeneous IoT devices and neuromorphic architectures and computing devices in the future.

Light-weight Gender Classification and Age Estimation based on Ensemble Multi-tasking Deep Learning (앙상블 멀티태스킹 딥러닝 기반 경량 성별 분류 및 나이별 추정)

  • Huy Tran, Quoc Bao;Park, JongHyeon;Chung, SunTae
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.