• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.044 seconds

Neural Network System Implementation Based on MVL-Automata Model (다치오토마타 모델을 이용한 신경망 시스템 구현)

  • 손창식;박진희;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.213-216
    • /
    • 2001
  • 기존의 유한오토마타는 입력 값에 따른 상태 전이가 유한개의 문자열이 입력될 때는 정확하게 인식하나 무한개의 문자열이 입력될 때는 정확하게 인식하지 못한다는 문제점을 가지고 있다. 본 논문에서는 유한오토마타의 상태 전이를 다치오토마타 모델을 이용하여 무한개의 상태로 확장할 수 있는 가능성을 제시하고 이를 신경망 (Neural Network)으로 구현한 다치-신경망 시스템을 제안한다.

  • PDF

Visual Navigation by Neural Network Learning (신경망 학습에 의한 영상처리 네비게이션)

  • Shin, Suk-Young;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.263-266
    • /
    • 2001
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide line or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.

  • PDF

Recognition of Driving Direction & Obstacles Using Neural Network (신경망을 이용한 차량의 주행방향과 장애물 인식에 관한 연구)

  • Kim, Myung-Soo;Yang, Sung-Hoon;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.341-343
    • /
    • 1995
  • In this paper, an algorithm is presented to recogniz the driving direction of a vehicle and obstacles in front of it based on highway road image. The algorithm employs a neural network with 27 sub sets obtained from the road image as its input. The outputs include the direction of the vehicle movement and presence or absence of obstacles. The road image, obtained by a video camera, was digitized and processed by a personal computer equipped with an image processing board.

  • PDF

Study of Muffler for Rotary Compressor by Taguchi Method Viewpoint (회전형 압축기용 머플러의 연구(1) : 다꾸찌 기법 관점에서)

  • 박성근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.548-553
    • /
    • 1998
  • The specific noise level of 18 rotary compressor mufflers were measured and these data were analyzed by the Taguchi robust design method and the neural network. The optimal design value obtained by the neural network generally showed good agreement with that by the Taguchi method. The effects of eight important design variables on the specific noise level were discussed.

  • PDF

Design of Multi-Dynamic Neuro-Fuzzy Controller for Dynamic Systems Control (동적시스템 제어를 위한 다단동적 뉴로-퍼지 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.150-153
    • /
    • 2007
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

A study for learning neural-network using internal representation (은닉층에 대한 의미부여를 통한 학습에 대한 연구)

  • 기세훈;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.842-846
    • /
    • 1993
  • Because of complexity, neural network is difficult to learn. So if internal representation[1] can be performed successfully, it is possible to use perceptron learning rule. As a result, learning is easier. Therefore the method of internal representations applied to the "XOR" problem, and the "spirals" problem. And then using the above results, the structure of neural network for computing is embodied.mputing is embodied.

  • PDF

Neural network based position estimation of mobile robot in slippery environment (Slip이 발생할 때 신경회로망을 이용한 이동로보트의 위치추정에 관한 연구)

  • 최동엽;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.133-138
    • /
    • 1993
  • This paper presents neural network based position estimation method in slippery environment as an approach to solve one of problems which are engaged in dead reckoning method. Position estimator is composed of slip detector and linear velocity estimator. Both of them are based on the fact that dynamic characteristic of mobile robot in slippery environment is different from the case without slip. To find out the dynamic relation among driving torque, angular acceleration of driving wheel and linear acceleration of mobile robot, accelerometer is used for measuring acceleration of mobile robot and neural network is used for dynamic system identifier in slippery environment.

  • PDF

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF

Identification and Control for Nonlinear Discrete Time Systems Using an Interconnected Neural Network

  • Yamamoto, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.994-998
    • /
    • 2005
  • A new control method, called a simple model matching, has been recently developed by the author. This is very simple and be applied for linear and nonlinear discrete time systems with/without time lag. Based on this formulation, identification is examined in this paper using an interconnected neural network with the EBP-EWLS learning algorithm. With this result, a control method is also presented for a nonlinear discrete time system.

  • PDF

Intelligent Agent System by Self Organizing Neural Network

  • Cho, Young-Im
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1468-1473
    • /
    • 2005
  • In this paper, I proposed the INTelligent Agent System by Kohonen's Self Organizing Neural Network (INTAS). INTAS creates each user's profile from the information. Based on it, learning community grouping suitable to each individual is automatically executed by using unsupervised learning algorithm. In INTAS, grouping and learning are automatically performed on real time by multiagents, regardless of the number of learners. A new framework has been proposed to generate multiagents, and it is a feature that efficient multiagents can be executed by proposing a new negotiation mode between multiagents..

  • PDF