• Title/Summary/Keyword: neural network.

Search Result 11,759, Processing Time 0.04 seconds

A hardware implementation of neural network with modified HANNIBAL architecture (수정된 하니발 구조를 이용한 신경회로망의 하드웨어 구현)

  • 이범엽;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 1996
  • A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). refs., figs., tabs.

  • PDF

Deep Neural Network Weight Transformation for Spiking Neural Network Inference (스파이킹 신경망 추론을 위한 심층 신경망 가중치 변환)

  • Lee, Jung Soo;Heo, Jun Young
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2022
  • Spiking neural network is a neural network that applies the working principle of real brain neurons. Due to the biological mechanism of neurons, it consumes less power for training and reasoning than conventional neural networks. Recently, as deep learning models become huge and operating costs increase exponentially, the spiking neural network is attracting attention as a third-generation neural network that connects convolution neural networks and recurrent neural networks, and related research is being actively conducted. However, in order to apply the spiking neural network model to the industry, a lot of research still needs to be done, and the problem of model retraining to apply a new model must also be solved. In this paper, we propose a method to minimize the cost of model retraining by extracting the weights of the existing trained deep learning model and converting them into the weights of the spiking neural network model. In addition, it was found that weight conversion worked correctly by comparing the results of inference using the converted weights with the results of the existing model.

A Training Case Study of Deep Learning Artificial Neural Networks for Teacher Educations (교사교육을 위한 딥러닝 인공신경망 교육 사례 연구)

  • Hur, Kyeong
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.385-391
    • /
    • 2021
  • In this paper, a case of deep learning artificial neural network education was studied for artificial intelligence literacy education for preservice teachers and incumbent teachers. In addition, through the proposed educational case, we tried to explore the contents of artificial neural network principle education that elementary, middle and high school students can experience. To this end, first, an example of training on the principle of operation of an artificial neural network that recognizes two types of images is presented. And as an artificial neural network extension application education case, an artificial neural network education case for recognizing three types of images was presented. The number of output layers was changed according to the number of images to be recognized by the artificial neural network, and the cases implemented in a spreadsheet were divided and explained. In addition, in order to experience the operation results of the artificial neural network, we presented the educational contents to directly write the learning data necessary for the artificial neural network of the supervised learning method. In this paper, the implementation of the artificial neural network and the recognition test results are visually presented using a spreadsheet.

  • PDF

Development of Basic Practice Cases for Recurrent Neural Networks (순환신경망 기초 실습 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.491-498
    • /
    • 2022
  • In this paper, as a liberal arts course for non-major students, a case study of recurrent neural network SW practice, which is essential for designing a basic recurrent neural network subject curriculum, was developed. The developed SW practice case focused on understanding the operation principle of the recurrent neural network, and used a spreadsheet to check the entire visualized operation process. The developed recurrent neural network practice case consisted of creating supervised text completion training data, implementing the input layer, hidden layer, state layer (context node), and output layer in sequence, and testing the performance of the recurrent neural network on text data. The recurrent neural network practice case developed in this paper automatically completes words with various numbers of characters. Using the proposed recurrent neural network practice case, it is possible to create an artificial intelligence SW practice case that automatically completes by expanding the maximum number of characters constituting Korean or English words in various ways. Therefore, it can be said that the utilization of this case of basic practice of recurrent neural network is high.

Development of Rainfall Forecastion Model Using a Neural Network (신경망이론을 이용한 강우예측모형의 개발)

  • 오남선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.253-256
    • /
    • 1996
  • Rainfall is one of the major and complicated elements of hydrologic system. Accurate prediction of rainfall is very important to mitigate storm damage. The neural network is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. In this dissertation, rainfall predictions by the neural network theory were presented. A multi-layer neural network was constructed. The network learned continuous-valued input and output data. The network was used to predict rainfall. The online, multivariate, short term rainfall prediction is possible by means of the developed model. A multidimensional rainfall generation model is applied to Seoul metropolitan area in order to generate the 10-minute rainfall. Application of neural network to the generated rainfall shows good prediction. Also application of neural network to 1-hour real data in Seoul metropolitan area shows slightly good predictions.

  • PDF

Inverse Estimation of Surface Temperature Using the RBF Network (RBF Network 를 이용한 표면온도 역추정에 관한 연구)

  • Jung, Bup-Sung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

A Note for Speed-Up of Interval Regression Neural Network (구간회귀 신경망의 속도개선)

  • 이중우;권순학
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.101-104
    • /
    • 2001
  • This paper deals with the speed-up of interval regression neural network. We propose an improved method of adjusting the parameter alpha used in the interval regression neural network to improve the learning speed and regression performance. Finally, we provide numerical examples to evaluate the performance of the proposed method.

  • PDF

Quality Control of Two Dimensions Using Digital Image Processing and Neural Networks (디지털 영상처리와 신경망을 이용한 2차원 평면 물체 품질 제어)

  • Kim, Jin-Hwan;Seo, Bo-Hyeok;Park, Seong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2580-2582
    • /
    • 2004
  • In this paper, a Neural Network(NN) based approach for classification of two dimensions images. The proposed algorithm is able to apply in the actual industry. The described diagnostic algorithm is presented to defect surface failures on tiles. A way to get data for a digital image process is several kinds of it. The tiles are scanned and the digital images are preprocessed and classified using neural networks. It is important to reduce the amount of input data with problem specific preprocessing. The auto-associative neural network is used for feature generation and selection while the probabilistic neural network is used for classification. The proposed algorithm is evaluated experimentally using one hundred of the real tile images. Sample image data to preprocess have histogram. The histogram is used as input value of probabilistic neural network. Auto-associative neural network compress input data and compressed data is classified using probabilistic neural network. Classified sample images are determined by human state. So it is intervened human subjectivity. But digital image processing and neural network are better than human classification ability. Therefore it is very useful of quality control improvement.

  • PDF

Intelligent system using frame function in wavelet neural network (웨이브릿 신경회로망의 프레임 함수를 이용한 지능시스템)

  • 홍석우;김용택;연정흠;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.195-198
    • /
    • 2000
  • We propose a new wavelet neural network structure, for which we apply new recurrent nodes to the network, in this paper for the dynamic system identification and control. We will construct the wavelet neural network by using wavelet frame function. The function does not have the best approximation property, but it may be possible to apply some modification to the structure of the network because the constriction of orthogonality is loosened a little. This wavelet neural network we propose can obtain previous state information by its structure of the network without any addition of input, though the conventional wavelet network needs additional previous state input for the improvement of the dynamic performance. In numerical experience, the performance of the new wavelet neural network we propose in the nonlinear system with uncertainity of parameter Is equal to that of the wavelet network which used the additional previous information input, superior to that of the conventional wavelet network.

  • PDF

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.