• Title/Summary/Keyword: neural network procedure

Search Result 349, Processing Time 0.027 seconds

Intelligent System Predictor using Virtual Neural Predictive Model

  • 박상민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.101-105
    • /
    • 1998
  • A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.

  • PDF

An On-line Algorithm for Machine Layout Problem (기계 배치 문제의 온라인 알고리즘)

  • Wang, Gi-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.27-36
    • /
    • 1995
  • This paper covers algorithms to determine a machine assignment strategy to locations on a single straight track by minimizing the total backtrack distance. Three different algorithms ar presented: an efficient heuristic procedure, the branch-and-bound algorithm, and the nerual network approach. Simulation results show that the proposed algorithms have potential power to design an on-line optimizer.

  • PDF

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Neural Network Cubes (N-Cubes) for Unsupervised learning in Gray-Scale noise

  • Lee, Won-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.571-576
    • /
    • 1999
  • We consider a class of auto-associative memories namely N-Cubes (Neural-network Cubes) in which 2-D gray-level images and hidden sinusoidal 1-D wavelets are stored in cubical memories. First we develop a learning procedure based upon the least-squares algorithm, Therefore each 2-D training image is mapped into the associated 1-D waveform in the training phase. Second we show how the recall procedure minimizes errors among the orthogonal basis functions in the hidden layer. As a 2-D images ould be retrieved in the recall phase. Simulation results confirm the efficiency and the noise-free properties of N-Cubes.

  • PDF

On the Ship's Berthig Control by introducing the Fuzzy Neural Network (선박 접이안의 퍼지학습제어)

  • 구자윤;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1994.04a
    • /
    • pp.55-67
    • /
    • 1994
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics ar low speed. In this paper the authors propose a new berthing control system which can evaluate as closely as captain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's decision-making by using the FNN(Fuzzy neural Network) controller which can simulate captain's knowledge. This berthing controller consists of the navigation subsystem FNN controller and the berthing subsystem FNN controller. The learning data are drawn from Ship Handling Simulator (NavSim NMS90 MK III) and represent the ship motion characteristics internally According to learning procedure both FNN controllers can tune membership functions and identify fuzzy control rules automatically The verified results show the FNN controllers effective to incorporate captain's knowledge and experience of berthing.

  • PDF

Optimal Process Parameters for Achieving the Desired Top-Bead Width in GMA welding Process (GMA 용접의 윗면 비드폭 선정을 위한 최적 공정변수들)

  • ;Prasad
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.89-96
    • /
    • 2002
  • This paper aims to develop an intelligent model for predicting top-bead width for the robotic GMA(Gas Metal Arc) welding process using BP(Back-propagation) neural network and multiple regression analysis. Firstly, based on experimental data, the basic factors affecting top-bead width are identified. Then BP neural network model and multiple regression models of top-bead width are established. The modeling methods and procedure are explained. The developed models are then verified by data obtained from the additional experiment and the predictive behaviors of the two kind of models are compared and analysed. Finally the modeling methods, predictive behaviors md the advantages of each models are discussed.

Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network (순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발)

  • Lee, Jung-Hwan;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF

Inverse Analysis Approach to Flow Stress Evaluation by Small Punch Test (소형펀치 시험과 역해석에 의한 재료의 유동응력 결정)

  • Cheon, Jin-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1753-1762
    • /
    • 2000
  • An inverse method is presented to obtain material's flow properties by using small punch test. This procedure employs, as the objective function of inverse analysis, the balance of measured load-di splacement response and calculated one during deformation. In order to guarantee convergence to global minimum, simulated annealing method was adopted to optimize the current objective function. In addition, artificial neural network was used to predict the load-displacement response under given material parameters which is the most time consuming and limits applications of global optimization methods to these kinds of problems. By implementing the simulated annealing for optimization along with calculating load-displacement curve by neural network, material parameters were identified irrespective of initial values within very short time for simulated test data. We also tested the present method for error-containing experimental data and showed that the flow properties of material were well predicted.

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.