• 제목/요약/키워드: neural network procedure

검색결과 349건 처리시간 0.022초

Case Analysis of Seismic Velocity Model Building using Deep Neural Networks (심층 신경망을 이용한 탄성파 속도 모델 구축 사례 분석)

  • Jo, Jun Hyeon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • 제24권2호
    • /
    • pp.53-66
    • /
    • 2021
  • Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.

Estimation of carcass weight of Hanwoo (Korean native cattle) as a function of body measurements using statistical models and a neural network

  • Lee, Dae-Hyun;Lee, Seung-Hyun;Cho, Byoung-Kwan;Wakholi, Collins;Seo, Young-Wook;Cho, Soo-Hyun;Kang, Tae-Hwan;Lee, Wang-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권10호
    • /
    • pp.1633-1641
    • /
    • 2020
  • Objective: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network. Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation. Results: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy. Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur;Gul, Muhammet
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.521-535
    • /
    • 2018
  • The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

The Recognition of Printed Chinese Characters using Probabilistic VQ Networks and hierarchical Structure (확률적 VQ 네트워크와 계층적 구조를 이용한 인쇄체 한자 인식)

  • Lee, Jang-Hoon;Shon, Young-Woo;Namkung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • 제4권7호
    • /
    • pp.1881-1892
    • /
    • 1997
  • This paper proposes the method for recognition of printed chinese characters by probabilistic VQ networks and multi-stage recognizer has hierarchical structure. We use modular neural networks, because it is difficult to construct a large-scale neural network. Problems in this procedure are replaced by probabilistic neural network model. And, Confused Characters which have significant ratio of miss-classification are reclassified using the entropy theory. The experimental object consists of 4,619 chinese characters within the KSC5601 code except the same shape but different code. We have 99.33% recognition rate to the training data, and 92.83% to the test data. And, the recognition speed of system is 4-5 characters per second. Then, these results demonstrate the usefulness of our work.

  • PDF

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • 제32권5호
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Evaluation of accidental eccentricity for buildings by artificial neural networks

  • Badaoui, M.;Chateauneuf, A.;Fournely, E.;Bourahla, N.;Bensaibi, M.
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.527-538
    • /
    • 2012
  • In seismic analyses of structures, additional eccentricity is introduced to take account for oscillations of random and unknown origins. In many codes of practice, the torsion about the vertical axis is considered through empirical accidental eccentricity formulation. Due to the random nature of structural systems, it is very difficult to evaluate the accidental eccentricity in a deterministic way and to specify its effect on the overall seismic response of structures. The aim of this study is to develop a procedure for the evaluation of the accidental eccentricity induced by uncertainties in stiffness and mass of structural members, using the neural network techniques coupled with Monte Carlo simulations. This method gives very interesting results for single story structures. For real structures, this method can be used as a tool to determine the accidental eccentricity in the seismic vulnerability studies of buildings.

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF