• Title/Summary/Keyword: neural network procedure

Search Result 349, Processing Time 0.029 seconds

Deep Learning Method for Identification and Selection of Relevant Features

  • Vejendla Lakshman
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.212-216
    • /
    • 2024
  • Feature Selection have turned into the main point of investigations particularly in bioinformatics where there are numerous applications. Deep learning technique is a useful asset to choose features, anyway not all calculations are on an equivalent balance with regards to selection of relevant features. To be sure, numerous techniques have been proposed to select multiple features using deep learning techniques. Because of the deep learning, neural systems have profited a gigantic top recovery in the previous couple of years. Anyway neural systems are blackbox models and not many endeavors have been made so as to examine the fundamental procedure. In this proposed work a new calculations so as to do feature selection with deep learning systems is introduced. To evaluate our outcomes, we create relapse and grouping issues which enable us to think about every calculation on various fronts: exhibitions, calculation time and limitations. The outcomes acquired are truly encouraging since we figure out how to accomplish our objective by outperforming irregular backwoods exhibitions for each situation. The results prove that the proposed method exhibits better performance than the traditional methods.

A study on the intelligent control of chaotic nonlinear systems using neural networks (신경 회로망을 이용한 혼돈 비선형 시스템의 지능 제어에 관한 연구)

  • 오기훈;주진만;박진배;최윤호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.453-456
    • /
    • 1996
  • In this paper, the direct adaptive control using neural networks is presented for the control of chaotic nonlinear systems. The direct adaptive control method has an advantage that the additional system identification procedure is not necessary. In order to evaluate the performance of our controller design method, two direct adaptive control methods are applied to a Duffing's equation and a Lorenz equation which are continuous-time chaotic systems. Our simulation results show the effectiveness of the controllers.

  • PDF

An Implementation of Digital Neural Network Using Systolic Array Processor (영어 수계를 이용한 디지털 신경망회로의 실현)

  • 윤현식;조원경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.44-50
    • /
    • 1993
  • In this paper, we will present an array processor for implementation of digital neural networks. Back-propagation model can be formulated as a consecutive matrix-vector multiplication problem with some prespecified thresholding operation. This operation procedure is suited for the design of an array processor, because it can be recursively and repeatedly executed. Systolic array circuit architecture with Residue Number System is suggested to realize the efficient arithmetic circuit for matrix-vector multiplication and compute sigmoid function. The proposed design method would expect to adopt for the application field of neural networks, because it can be realized to currently developed VLSI technology.

  • PDF

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

Advanced performance evaluation system for existing concrete bridges

  • Miyamoto, Ayaho;Emoto, Hisao;Asano, Hiroyoshi
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.727-743
    • /
    • 2014
  • The management of existing concrete bridges has become a major social concern in many developed countries due to the large number of bridges exhibiting signs of significant deterioration. This problem has increased the demand for effective maintenance and renewal planning. In order to implement an appropriate management procedure for a structure, a wide array of corrective strategies must be evaluated with respect to not only the condition state of each defect but also safety, economy and sustainability. This paper describes a new performance evaluation system for existing concrete bridges. The system evaluates performance based on load carrying capability and durability from the results of a visual inspection and specification data, and describes the necessity of maintenance. It categorizes all girders and slabs as either unsafe, severe deterioration, moderate deterioration, mild deterioration, or safe. The technique employs an expert system with an appropriate knowledge base in the evaluation. A characteristic feature of the system is the use of neural networks to evaluate the performance and facilitate refinement of the knowledge base. The neural network proposed in the present study has the capability to prevent an inference process and knowledge base from becoming a black box. It is very important that the system is capable of detailing how the performance is calculated since the road network represents a huge investment. The effectiveness of the neural network and machine learning method is verified by comparing diagnostic results by bridge experts.

SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure (실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구)

  • Park, Seung-Beom;Yun, Pal-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

WEED DETECTION BY MACHINE VISION AND ARTIFICIAL NEURAL NETWORK

  • S. I. Cho;Lee, D. S.;J. Y. Jeong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.270-278
    • /
    • 2000
  • A machine vision system using charge coupled device(CCD) camera for the weed detection in a radish farm was developed. Shape features were analyzed with the binary images obtained from color images of radish and weeds. Aspect, Elongation and PTB were selected as significant variables for discriminant models using the STEPDISC option. The selected variables were used in the DISCRIM procedure to compute a discriminant function for classifying images into one of the two classes. Using discriminant analysis, the successful recognition rate was 92% for radish and 98% for weeds. To recognize radish and weeds more effectively than the discriminant analysis, an artificial neural network(ANN) was used. The developed ANN model distinguished the radish from the weeds with 100%. The performance of ANNs was improved to prevent overfitting and to generalize well using a regularization method. The successful recognition rate in the farms was 93.3% for radish and 93.8% for weeds. As a whole, the machine vision system using CCD camera with the artificial neural network was useful to detect weeds in the radish farms.

  • PDF

Using neural networks to model and predict amplitude dependent damping in buildings

  • Li, Q.S.;Liu, D.K.;Fang, J.Q.;Jeary, A.P.;Wong, C.K.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.25-40
    • /
    • 1999
  • In this paper, artificial neural networks, a new kind of intelligent method, are employed to model and predict amplitude dependent damping in buildings based on our full-scale measurements of buildings. The modelling method and procedure using neural networks to model the damping are studied. Comparative analysis of different neural network models of damping, which includes multi-layer perception network (MLP), recurrent neural network, and general regression neural network (GRNN), is performed and discussed in detail. The performances of the models are evaluated and discussed by tests and predictions including self-test, "one-lag" prediction and "multi-lag" prediction of the damping values at high amplitude levels. The established models of damping are used to predict the damping in the following three ways : (1) the model is established by part of the data measured from one building and is used to predict the another part of damping values which are always difficult to obtain from field measurements : the values at the high amplitude level. (2) The model is established by the damping data measured from one building and is used to predict the variation curve of damping for another building. And (3) the model is established by the data measured from more than one buildings and is used to predict the variation curve of damping for another building. The prediction results are discussed.

Integrated Procedure of Self-Organizing Map Neural Network and Case-Based Reasoning for Multivariate Process Control (자기조직화 지도 신경망과 사례기반추론을 이용한 다변량 공정관리)

  • 강부식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.53-69
    • /
    • 2003
  • Many process variables in modem manufacturing processes have influence on quality of products with complicated relationships. Therefore, it is necessary to control multiple quality variables in order to monitor abnormal signals in the processes. This study proposes an integrated procedure of self-organizing map (SOM) neural network and case-based reasoning (CBR) for multivariate process control. SOM generates patterns of quality variables. The patterns are compared with the reference patterns in order to decide whether their states are normal or abnormal using the goodness-of-fitness test. For validation, it generates artificial datasets consisting of six patterns, normal and abnormal patterns. Experimental results show that the abnormal patterns can be detected effectively. This study also shows that the CBR procedure enables to keep Type 2 error at very low level and reduce Type 1 error gradually, and then the proposed method can be a solution fur multivariate process control.

  • PDF

Application of Artificial Neural Network to Flamelet Library for Gaseous Hydrogen/Liquid Oxygen Combustion at Supercritical Pressure (초임계 압력조건에서 기체수소-액체산소 연소해석의 층류화염편 라이브러리에 대한 인공신경망 학습 적용)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2021
  • To develop an efficient procedure related to the flamelet library, the machine learning process based on artificial neural network(ANN) is applied for the gaseous hydrogen/liquid oxygen combustor under a supercritical pressure condition. For hidden layers, 25 combinations based on Rectified Linear Unit(ReLU) and hyperbolic tangent are adopted to find an optimum architecture in terms of the computational efficiency and the training performance. For activation functions, the hyperbolic tangent is proper to get the high learning performance for accurate properties. A transformation learning data is proposed to improve the training performance. When the optimal node is arranged for the 4 hidden layers, it is found to be the most efficient in terms of training performance and computational cost. Compared to the interpolation procedure, the ANN procedure reduces computational time and system memory by 37% and 99.98%, respectively.