• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.027 seconds

A Study on the Prediction of Mass and Length of Injection-molded Product Using Artificial Neural Network (인공신경망을 활용한 사출성형품의 질량과 치수 예측에 관한 연구)

  • Yang, Dong-Cheol;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • This paper predicts the mass and the length of injection-molded products through the Artificial Neural Network (ANN) method. The ANN was implemented with 5 input parameters and 2 output parameters(mass, length). The input parameters, such as injection time, melt temperature, mold temperature, packing pressure and packing time were selected. 44 experiments that are based on the mixed sampling method were performed to generate training data for the ANN model. The generated training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. A random search method was used to find the optimized hyper-parameter of the ANN model. After the ANN completed the training, the ANN model predicted the mass and the length of the injection-molded product. According to the result, average error of the ANN for mass was 0.3 %. In the case of length, the average deviation of ANN was 0.043 mm.

Bit-level Array Structure Representation of Weight and Optimization Method to Design Pre-Trained Neural Network (학습된 신경망 설계를 위한 가중치의 비트-레벨 어레이 구조 표현과 최적화 방법)

  • Lim, Guk-Chan;Kwak, Woo-Young;Lee, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.37-44
    • /
    • 2002
  • This paper proposes efficient digital hardware design method by using fixed weight of pre-trained neural network. For this, arithmetic operations of PEs(Processing Elements) are represented with matrix-vector multiplication. The relationship of fixed weight and input data present bit-level array structure architecture which is consisted operation node. To minimize the operation node, this paper proposes node elimination method and setting common node depend on bit pattern of weight. The result of FPGA simulation shows the efficiency on hardware cost and operation speed with full precision. And proposed design method makes possibility that many PEs are implemented to on-chip.

Optimum Design based on Sequential Design of Experiments and Artificial Neural Network for Heat Resistant Characteristics Enhancement in Front Pillar Trim (프런트 필라 트림의 내열특성 향상을 위한 순차적 실험계획법과 인공신경망 기반의 최적설계)

  • Lee, Jung Hwan;Suh, Myung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1079-1086
    • /
    • 2013
  • Optimal mount position of a front pillar trim considering heat resistant characteristics can be determined by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). Generally, approximated optimum results are obtained through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network (ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently.

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

A Novel RFID Dynamic Testing Method Based on Optical Measurement

  • Zhenlu Liu;Xiaolei Yu;Lin Li;Weichun Zhang;Xiao Zhuang;Zhimin Zhao
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.

Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect (컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 -)

  • Lee Choong-yong;Min Seungjae;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.

Optimization Calculations and Machine Learning Aimed at Reduction of Wind Forces Acting on Tall Buildings and Mitigation of Wind Environment

  • Tanaka, Hideyuki;Matsuoka, Yasutomo;Kawakami, Takuma;Azegami, Yasuhiko;Yamamoto, Masashi;Ohtake, Kazuo;Sone, Takayuki
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.291-302
    • /
    • 2019
  • We performed calculations combining optimization technologies and Computational Fluid Dynamics (CFD) aimed at reducing wind forces and mitigating wind environments (local strong winds) around buildings. However, the Reynolds Averaged Navier-stokes Simulation (RANS), which seems somewhat inaccurate, needs to be used to create a realistic CFD optimization tool. Therefore, in this study we explored the possibilities of optimizing calculations using RANS. We were able to demonstrate that building configurations advantageous to wind forces could be predicted even with RANS. We also demonstrated that building layouts was more effective than building configurations in mitigating local strong winds around tall buildings. Additionally, we used the Convolutional Neural Network (CNN) as an airflow prediction method alternative to CFD in order to increase the speed of optimization calculations, and validated its prediction accuracy.

Intelligent control of redundant manipulator in an environment with obstacles (장애물이 있는 환경하에서 여유자유도 로보트의 지능제어 방법)

  • 현웅근;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.168-173
    • /
    • 1991
  • A neural optimization network is proposed to control the redundant robot manipulators in an environment with the obstacle. The weightings of the network are adjusted by considering both the joint dexterity and the capability of collision avoidance of joint differential motion. The fuzzy rules are proposed to determine the capability of collision avoidance of each joint. To show the validities of the proposed method, computer simulation results are illustrated for the redundant robot of the planner type with three degrees of freedom.

  • PDF