• Title/Summary/Keyword: neural network optimization

Search Result 818, Processing Time 0.025 seconds

Noise Optimization of the Cooling Fan in an Engine Room by using Neural Network (신경망이론을 적용한 엔진룸내의 냉각팬 소음 최적화 연구)

  • Chung, Ki-Hoon;Choi, Han-Lim;Kim, Bum-Sub;Kim, Jae-Seung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.116-121
    • /
    • 2002
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. To calculate the unsteady resultant force over the fan blade in an unsymmetric engine room. Time-Marching Free-Wake Method is used. From the calculations of unsteady force on fan blades, noise signal of an engine cooling fan is calculated by using an acoustic similarity law. Noise optimization is obtained from Neural Network which is constructed based on the calculated flow rate and noise spectrum.

  • PDF

Development of a Modified Random Signal-based Learning using Simulated Annealing

  • Han, Chang-Wook;Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.179-186
    • /
    • 2015
  • This paper describes the application of a simulated annealing to a random signal-based learning. The simulated annealing is used to generate the reinforcement signal which is used in the random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural network. It is poor at hill-climbing, whereas simulated annealing has an ability of probabilistic hill-climbing. Therefore, hybridizing a random signal-based learning with the simulated annealing can produce better performance than before. The validity of the proposed algorithm is confirmed by applying it to two different examples. One is finding the minimum of the nonlinear function. And the other is the optimization of fuzzy control rules using inverted pendulum.

Noise Optimization of the Cooling Fan in an Engine Room by using Neural Network (신경망이론을 적용한 엔진룸내의 냉각팬 소음 최적화 연구)

  • Chung, Ki-Hoon;Park, Han-Lim;Kim, Bum-Sub;Kim, Jae-Seung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.318.2-318
    • /
    • 2002
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate fur cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. To calculate the unsteady resultant force over the fan blade in an unsymmetric engine room, Time-Marching Free-Wake Method is used. From the calculations of unsteady force on fan blades, noise signal of an engine cooling fan is calculated by using an acoustic similarity law. (omitted)

  • PDF

Artificial Intelligence Engine for Numerical Analysis of Surface Waves (표면파의 수치해석을 위한 인공지능 엔진 개발)

  • Kwak Hyo-Gyoung;Kim Jae-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.89-96
    • /
    • 2006
  • Nondestructive evaluation using surface waves needs an analytical solution for the reference value to compare with experimental data. Finite element analysis is very powerful tool to simulate the wave propagation, but has some defects. It is very expensive and high time-complexity for the required high resolution. For those reasons, it is hard to implement an optimization problem in the actual situation. The developed engine in this paper can substitute for the finite element analysis of surface waves propagation, and it accomplishes the fast analysis possible to be used in optimization. Including this artificial intelligence engine, most of soft computing algorithms can be applied on the special database. The database of surface waves propagation is easily constructed with the results of finite element analysis after reducing the dimensions of data. The principal wavelet-component analysis is an efficient method to simplify the transient wave signal into some representative peaks. At the end, artificial neural network based on the database make it possible to invent the artificial intelligence engine.

  • PDF

Implementation of Neural Network for Cost Minimum Routing of Distribution System Planning (배전계통계획의 최소비용 경로탐색을 위한 신경회로망의 구현)

  • Choi, Nam-Jin;Kim, Byung-Seop;Chae, Myung-Suk;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.232-235
    • /
    • 1999
  • This paper presents a HNN(Hopfield Neural Network) model to solve the ORP(Optimal Routing Problem) in DSP(Distribution System Planning). This problem is generally formulated as a combinatorial optimization problem with various equality and inequality constraints. Precedent study[3] considered only fixed cert, but in this paper, we proposed the capability of optimization by fixed cost and variable cost. And suggested the corrected formulation of energy function for improving the characteristics of convergence. The proposed algorithm has been evaluated through the sample distribution planning problem and the simmulation results are presented.

  • PDF

Optimum Cooling System Design of Injection Mold using Back-Propagation Algorithm (오류역전파 알고리즘을 이용한 최적 사출설형 냉각시스템 설계)

  • Tae, J.S.;Choi, J.H.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.357-360
    • /
    • 2009
  • The cooling stage greatly affects the product quality in the injection molding process. The cooling system that minimizes temperature variance in the product surface will improve the quality and the productivity of products. In this research, we tried the back-propagation algorithm of artificial neural network to find an optimum solution in the cooling system design of injection mold. The cooling system optimization problem that was once solved by a response surface method with 4 design variables was solved by applying the back-propagation algorithm, resulting in a solution with a sufficient accuracy. Furthermore the number of training points was much reduced by applying the fractional factorial design without losing solution accuracy.

  • PDF

Distributed Neural Network Optimization Study using Adaptive Approach for Multi-Agent Collaborative Learning Application (다중 에이전트 협력학습 응용을 위한 적응적 접근법을 이용한 분산신경망 최적화 연구)

  • Junhak Yun;Sanghun Jeon;Yong-Ju Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.442-445
    • /
    • 2023
  • 최근 딥러닝 및 로봇기술의 발전으로 인해 대량의 데이터를 빠르게 수집하고 처리하는 연구 분야들로 확대되었다. 이와 관련된 한 가지 분야로써 다중 로봇을 이용한 분산학습 연구가 있으며, 이는 단일 에이전트를 이용할 때보다 대량의 데이터를 빠르게 수집 및 처리하는데 용이하다. 본 연구에서는 기존 Distributed Neural Network Optimization (DiNNO) 알고리즘에서 제안한 정적 분산 학습방법과 달리 단계적 분산학습 방법을 새롭게 제안하였으며, 모델 성능을 향상시키기 위해 원시 변수를 근사하는 단계수를 상수로 고정하는 기존의 방식에서 통신회차가 늘어남에 따라 점진적으로 근사 횟수를 높이는 방법을 고안하여 새로운 알고리즘을 제안하였다. 기존 알고리즘과 제안된 알고리즘의 정성 및 정량적 성능 평가를 수행하기 MNIST 분류와 2 차원 평면도 지도화 실험을 수행하였으며, 그 결과 제안된 알고리즘이 기존 DiNNO 알고리즘보다 동일한 통신회차에서 높은 정확도를 보임과 함께 전역 최적점으로 빠르게 수렴하는 것을 입증하였다.

Partitioning of Field of View by Using Hopfield Network (홉필드 네트워크를 이용한 FOV 분할)

  • Cha, Young-Youp;Choi, Bum-Sick
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.667-672
    • /
    • 2001
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.

  • PDF

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.