• 제목/요약/키워드: neural network control

검색결과 2,587건 처리시간 0.026초

개선된 신경망과 사진 인증을 이용한 여권 인식 (Recognition of Passports using Enhanced Neural Networks and Photo Authentication)

  • 김광백;박현정
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.983-989
    • /
    • 2006
  • 현재의 출입국 관리는 여권을 제시하면 여권을 육안으로 검색하고 수작업으로 정보를 입력하여 여권 데이터베이스와 대비하는 것이다. 본 논문에서는 여권의 정보를 인식 할 수 있는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다. 추출된 문자열 영역을 이진화하고 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM 마스크를 적용한 후에 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 개별 코드의 인식은 ART2 알고리즘을 RBF 네트워크의 중간층으로 적용하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법으로 동작하는 RBF 네트워크를 적용한다. 사진 영역은 코드의 문자열 영역을 추출한 후에 코드의 문자열 영역이 시작되는 좌표를 중심으로 사진 영역을 추출한 후, Luminance, Edge, Hue 정보를 이용하여 사진 부분을 검증한다. 검증된 사진 부분 영상은 ART2 알고리즘을 적용하여 사진의 특징들을 분류하고, 이를 이용하여 사진 인증을 하게 된다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

추계학적모형과 신경망모형을 연계한 병렬저수지군의 유입량산정 (Streamflow Estimation using Coupled Stochastic and Neural Networks Model in the Parallel Reservoir Groups)

  • 김성원
    • 한국수자원학회논문집
    • /
    • 제36권2호
    • /
    • pp.195-209
    • /
    • 2003
  • 본 연구에서는 낙동강 상류유역의 병렬 다목적댐군인 안동 및 임하다목적 댐의 장기간 유입량을 산정하는데 공간추계 신경망모형이 사용되었다. 공간추계 신경망모형은 역전파 알고리즘으로 LMBP와 BFGS-QNBP를 각각 사용하였다. 공간추계 신경망모형의 구조는 입력층, 은닉층 및 출력층의 3개의 층과 차례대로 8-8-2개의 노드로 구성되어 있다. 입력층 노드는 안동 및 임하다목적 댐의 월평균유입량, 월면적강우량, 월별 증발접시 증발량과 월평균기온으로 구성되어 있으며, 자료시계열은 시간적으로 차이가 있다. 공간추계 신경망모형의 훈련을 위하여 추계학적 모형중 하나인 PARMA(1,1)에 의해서 훈련자료를 모의발생시켰으며, 모의발생된 자료는 공간추계 신경망모형의 훈련에 사용되었다. 훈련을 통하여 공간추계 신경망모형의 매개변수인 최적연결강도와 편차를 산정하였다. 산정된 매개변수는 안동 및 임하다목적 댐의 실측자료를 이용하여 공간추계 신경망모형의 검증에 이용되었으며, 통계분석과 수문곡선의 비교를 통하여 우수한 결과를 나타내었다. 따라서 공간추계 신경망모형은 낙동강 상류유역의 병렬저수지군의 장기간 연계운영기법 개발을 위하여 기초적인 자료를 제공하고, 용수분배 및 관리에 도움을 줄 것이다.

휴머노이드 로봇의 안정적 보행을 위한 다중 비선형 제어기 구현 (Implementation of Multiple Nonlinearities Control for Stable Walking of a Humanoid Robot)

  • 공정식;김진걸;이보희
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.215-221
    • /
    • 2006
  • 본 논문은 휴머노이드 로봇에 내재되어 있는 다양한 비선형성을 제어하기 위한 비선형 제어기를 제안에 관한 것이다. 기본적으로 휴머노이드 로봇은 기구적으로 불안정성을 내포하고 있고 기어나 모터 드라이버 등에서 다양한 비선형성을 가지고 있다. 이렇게 로봇 안에 존재하는 백래쉬(Backlash)나 포화(Saturation)와 같은 다양한 종류의 비선형성을 제어하는데 있어서 기존의 퍼지 알고리즘, 외란 관측기, 지능 학습망과 같은 제어 기법으로는 다수의 비선형성을 제어하는 데에는 한계를 지닐 수밖에 없다. 이에 본 논문에서는 스위칭 PE를 이용하여 모터 드라이버에 존재하는 포화에 의한 비선형성을 제거 하였으며 백래쉬에 의해 생기는 비선형성의 영향을 제어하기 위해 듀얼 피드백을 이용하였다. 그리고 시스템의 정확한 데이터를 얻기 위해 제어 알고리즘을 적용하기 이전에 모터 시스템에 대해 유전 알고리즘을 이용하여 시스템 식별을 수행하여 모터 시스템을 정확하게 유도하였으며, 시뮬레이션 과정을 통해 최적의 스위칭 PID 제어 이득값을 얻었다. 이렇게 얻어진 모터 식별값과 스위칭 PE제어 이득값을 시뮬레이션과 제안된 로봇인 ISHURO를 이용한 실험을 통해 이를 검증하였다.

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식 (Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest)

  • 허두영;김상준;곽충섭;남재열;고병철
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • 본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.

대체연료를 사용하는 시멘트 예열실 온도 예측 제어 (Temperature Prediction and Control of Cement Preheater Using Alternative Fuels)

  • 발진냠 바산어치르;이예림;유보선;최재식
    • 자원리싸이클링
    • /
    • 제33권4호
    • /
    • pp.3-14
    • /
    • 2024
  • 시멘트 제조공정 중 예열 및 소성 공정은 시멘트 반제품인 클링커를 생산하는 주요 공정으로, 고온의 열에너지를 발생시키기 위해 많은 양의 화석연료를 사용한다. 하지만, 최근 환경오염 문제의 심각성으로 인해 시멘트 산업에서 화석연료로부터 기인하는 탄소 배출량을 저감하고자 하는 시도가 지속되고 있다. 대표적인 해결 방안으로 화석연료 대신 폐기물 유래 연료(RDF, Refuse-Derived Fuel)와 같은 대체연료의 사용량을 증대시키기 위한 선행 연구 사례들이 많다. 대체연료는 탄소뿐만 아니라 질소산화물 발생량 또한 저감시킬 수 있고 폐기물을 매립하는 대신 예열실 및 소성로에서 연소시켜 처리할 수 있다는 장점이 있다. 하지만 다양한 성분으로 구성된 대체연료의 특성상 열량을 추정할 수 없다는 문제점이 있으며, 이로 인해 대체연료 사용량을 증대시키고 안정적으로 예열실을 제어하는 데 어려움이 있다. 따라서 본 연구에서는 심층 신경망을 기반으로 예열실 온도를 예측하는 모델을 개발하여 미래의 예열실 온도에 대한 비교적 정확한 예측 값을 제공하고, 설명가능 인공지능을 활용하여 최적의 연료 투입량을 제시하는 솔루션을 제안하였다. 제안된 솔루션은 실제 예열 공정 현장에 적용되어 화석연료 사용량 5% 감소, 대체연료 대체율 5%p 증가, 예열실 온도 변동 35% 감소하는 성과를 달성할 수 있었다.

자율 주행 용접 로봇을 위한 시각 센서 개발과 환경 모델링 (Visual Sensor Design and Environment Modeling for Autonomous Mobile Welding Robots)

  • 김민영;조형석;김재훈
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.776-787
    • /
    • 2002
  • Automation of welding process in shipyards is ultimately necessary, since the welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding mobile robot that can navigate autonomously within the enclosure has been developed. To achieve the welding task in the closed space, the robotic welding system needs a sensor system for the working environment recognition and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with 3D work environmental map. Using this sensor system, a spatial filter based on neural network technology is designed for extracting the center of laser stripe, and evaluated in various situations. An environment modeling algorithm structure is proposed and tested, which is composed of the laser scanning module for 3D voxel modeling and the plane reconstruction module for mobile robot localization. Finally, an environmental recognition strategy for welding mobile robot is developed in order to recognize the work environments efficiently. The design of the sensor system, the algorithm for sensing the partially structured environment with plane segments, and the recognition strategy and tactics for sensing the work environment are described and discussed with a series of experiments in detail.

품질 기능 전개법과 위험 부담 관리법을 조합한 설계 최적화 기법의 용접 품질 감시 시스템 개발 응용 (Weld Quality Monitoring System Development Applying A design Optimization Approach Collaborating QFD and Risk Management Methods)

  • 손중수;박영원
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.207-216
    • /
    • 2000
  • This paper introduces an effective system design method to develop a customer oriented product using a design optimization process and to select a set of critical design paramenters,. The process results in the development of a successful product satisfying customer needs and reducing development risk. The proposed scheme adopted a five step QFD(Quality Function Deployment) in order to extract design parameters from customer needs and evaluated their priority using risk factors for extracted design parameters. In this process we determine critical design parameters and allocate them to subsystem designers. Subsequently design engineers develop and test the product based on these parameters. These design parameters capture the characteristics of customer needs in terms of performance cost and schedule in the process of QFD, The subsequent risk management task ensures the minimum risk approach in the presence of design parameter uncertainty. An application of this approach was demonstrated in the development of weld quality monitoring system. Dominant design parameters affect linearity characteristics of weld defect feature vectors. Therefore it simplifies the algorithm for adopting pattern classification of feature vectors and improves the accuracy of recognition rate of weld defect and the real time response of the defect detection in the performance. Additionally the development cost decreases by using DSP board for low speed because of reducing CPU's load adopting algorithm in classifying weld defects. It also reduces the cost by using the single sensor to measure weld defects. Furthermore the synergy effect derived from the critical design parameters improves the detection rate of weld defects by 15% when compared with the implementation using the non-critical design parameters. It also result in 30% saving in development cost./ The overall results are close to 95% customer level showing the effectiveness of the proposed development approach.

  • PDF

RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계 (Design of RBFNN-based Emotional Lighting System Using RGBW LED)

  • 임승준;오성권
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

DSP를 이용한 Switched Reluctance Motor의 디지털 제어기에 관한 연구 (A Research on the Digital Controller of Switched Reluctance Motor Using DSP)

  • 박성준;박한웅;김정택;추영배;이만형
    • 전력전자학회논문지
    • /
    • 제3권3호
    • /
    • pp.263-272
    • /
    • 1998
  • 본 논문은 자기적 비선형성과 상간의 토오크중첩을 고려하여 맥동토오크를 최소화시킬 수 있는 제어기법을 제시하고 이를 DSP를 이용하여 구현한 SRM의 구동시스템에 대하여 기술하였다. 이를 위해 먼저 몇 단계의 상전류 크기에 대한 회전자 위치별 인덕턴스값과 발생토오크의 크기를 실측한 후 이들 대표값으로부터 신경회로망을 사용하여 제어에 필요한 충분히 정밀한 값들을 추론한다. 또한 각 상간의 토오크중첩을 고려하여 총합 발생토오크의 맥동성분의 최소화되도록 상별 지령토오크 파형을 설정한다. 회전자위치와 상전류를 검출하고, 이 검출값과 추론된 토오크데이터를 이용하여 구한 토오크 값이 지령토오크를 추종하도록 델타변조기법에 의한 제어기를 구성한다. 이러한 제어방식을 실시간으로 처리하고, 제어기의 신뢰성을 높이기 위해 DSP를 사용하였다.

  • PDF