DOI QR코드

DOI QR Code

Temperature Prediction and Control of Cement Preheater Using Alternative Fuels

대체연료를 사용하는 시멘트 예열실 온도 예측 제어

  • Received : 2024.06.18
  • Accepted : 2024.07.03
  • Published : 2024.08.31

Abstract

The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence. Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

시멘트 제조공정 중 예열 및 소성 공정은 시멘트 반제품인 클링커를 생산하는 주요 공정으로, 고온의 열에너지를 발생시키기 위해 많은 양의 화석연료를 사용한다. 하지만, 최근 환경오염 문제의 심각성으로 인해 시멘트 산업에서 화석연료로부터 기인하는 탄소 배출량을 저감하고자 하는 시도가 지속되고 있다. 대표적인 해결 방안으로 화석연료 대신 폐기물 유래 연료(RDF, Refuse-Derived Fuel)와 같은 대체연료의 사용량을 증대시키기 위한 선행 연구 사례들이 많다. 대체연료는 탄소뿐만 아니라 질소산화물 발생량 또한 저감시킬 수 있고 폐기물을 매립하는 대신 예열실 및 소성로에서 연소시켜 처리할 수 있다는 장점이 있다. 하지만 다양한 성분으로 구성된 대체연료의 특성상 열량을 추정할 수 없다는 문제점이 있으며, 이로 인해 대체연료 사용량을 증대시키고 안정적으로 예열실을 제어하는 데 어려움이 있다. 따라서 본 연구에서는 심층 신경망을 기반으로 예열실 온도를 예측하는 모델을 개발하여 미래의 예열실 온도에 대한 비교적 정확한 예측 값을 제공하고, 설명가능 인공지능을 활용하여 최적의 연료 투입량을 제시하는 솔루션을 제안하였다. 제안된 솔루션은 실제 예열 공정 현장에 적용되어 화석연료 사용량 5% 감소, 대체연료 대체율 5%p 증가, 예열실 온도 변동 35% 감소하는 성과를 달성할 수 있었다.

Keywords

Acknowledgement

이 연구는 2024년도 산업자원통상부 및 한국산업기술기획평가원(KETI) 연구비 지원에 의한 연구임(No. RS2023-00261157).

References

  1. Cao, Z., Masanet, E., Tiwari, A., et al., 2021 : Decarbonizing Concrete: Deep decarbonization pathways for the cement and concrete cycle in the United States, India, and China, Industrial Sustainability Analysis Laboratory, Northwestern University, Evanston, IL, pp. 3. https://www.climateworks.org/report/decarbonizing-concrete/, June 17, 2024.
  2. Rodrigues, F. A., Joekes, I., 2011 : Cement industry: sustainability, challenges and perspectives, Environmental Chemistry Letters, 9, pp.151-166. https://doi.org/10.1007/s10311-010-0302-2
  3. Rahman, A., Rasul, M. G., Khan, M. M. K., et al., 2017 : Assessment of energy performance and emission control using alternative fuels in cement industry through a process model, Energies, 10(12), pp.1996.
  4. Kim, R. H., 2019 : Current state of carbon dioxide emission in cement industry and proposal for the environment load reducing cement used inorganic construction wastes, Magazine of RCR, 14(1), pp.22-28. https://doi.org/10.14190/MRCR.2019.14.1.022
  5. Choi, J. W., Baek, J. I., Kwon, S. J., et al., 2020 : Study on the Correlation between Air Emission Gas and Alternative Fuels Used in Cement Sintering Process, Journal of the Korean Recycled Construction Resources Institute, 8(3), pp.286-293. https://doi.org/10.14190/JRCR.2020.8.3.286
  6. Lim, J. H., Ahn, Y. C., Kim, J. G., 2023 : Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution, Process Safety and Environmental Protection, 169, pp.685-696.
  7. Huh, S. Y., Lee, H. J., Shin, J. W., et al., 2018 : Inter-fuel substitution path analysis of the korea cement industry, Renewable and Sustainable Energy Reviews, 82, pp.4091-4099. https://doi.org/10.1016/j.rser.2017.10.065
  8. Sharma, P., Sheth, P. N., Mohapatra, B. N., 2022 : Recent progress in refuse derived fuel (RDF) co-processing in cement production: direct firing in kiln/calciner vs process integration of RDF gasification, Waste and Biomass Valorization, 13(11), pp.4347-4374. https://doi.org/10.1007/s12649-022-01840-8
  9. Korea Cement Association, Current Status of Recycling of Alternative Resources in the Overseas Cement Industry. http://recycling.cement.or.kr/contents/sub3_02.asp?sm=3_2_0, June 17, 2024.
  10. Prasanna, N. M., Bojja, P., 2019 : Optimization of rotary kiln in cement industry using conventional control systems, Helix, 9(1), pp.4843-4849. https://doi.org/10.29042/2019-4843-4849
  11. Zhongda, T., Shujiang, L., Yanhong, W., et al., 2018 : SVM predictive control for calcination zone temperature in lime rotary kiln with improved PSO algorithm, Transactions of the Institute of Measurement and Control, 40(10), pp.3134-3146. https://doi.org/10.1177/0142331217716983
  12. Ramasamy, V., Sidharthan, R. K., Kannan, R., et al., 2019 : Optimal tuning of model predictive controller weights using genetic algorithm with interactive decision tree for industrial cement kiln process, Processes, 7(12), pp.938.
  13. Balakrishnan, A., Chandrashekara, R. S., Sunny, S., AI Kiln Solution For Optimized Control : How To Reduce Energy Consumption And Emissions In The Clinker Process. https://assets.new.siemens.com/siemens/assets/api/uuid:43d0c42a-27e5-4b3a-a4d7-a60852982cf1/2023ieeea iforkiln.pdf, November 16, 2023.
  14. Sun, C., Liu, P., Guo, H., et al., 2023 : Control of Precalciner temperature in the cement industry: a novel method of Hammerstein model predictive control with ISSA, Processes, 11(1), pp.214.