• Title/Summary/Keyword: neural learning scheme

Search Result 260, Processing Time 0.03 seconds

Recognition of Hangul Characters with Input Noise (잡음성분을 포함한 한글 문자 인식)

  • Chang, Sun-Young;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.465-469
    • /
    • 1990
  • This thesis proposes a new scheme for the recognition of presegmented Hangul characters. The proposed approach is rather insensitive to noise and variation by applying 2 dimensional convolution to learning patterns. In this thesis, the hangul recognition neural network is implemented in the basis of this scheme and recognition rate is analyzed in boo cases of learning which are learning by binary patterns and learning by binary patterns and convoluted patterns together.

  • PDF

Force tracking impedance control of robot by learning of robot-environment dynamics (로봇-작업환경 동역학의 학습에 의한 로봇의 힘 추종 임피이던스 제어)

  • 신상운;최규종;김영원;안두성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.548-551
    • /
    • 1997
  • Performance of force tracking impedance control of robot manipulators is degraded by the uncertainties in the robot and environment dynamic model. The purpose of this paper is to improve the controller robustness by applying neural network. Neural networks are designed to learn the uncertainties in robot and environment model for compensating the uncertainties. The proposed scheme is verified through the simulation of 20DOF robot manipulator.

  • PDF

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

Inverse Kinematic Learning of Robot Coordinate Transformations Using Dynamic Neural Network (동적 신경망에 의한 로봇 좌표 변환의 역기구학적 학습)

  • Cho, Hyeon-Seob;Ryu, In-Ho;Jeon, Jeong-Chay;Kim, Hee-Sook;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2363-2366
    • /
    • 1998
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

On design of neural controller with the fuzzy weight for an underwater vehicle (수중운동체를 위한 퍼지 가중치를 갖는 뉴럴 제어기 설계)

  • 김성현;최중락;심귀보;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.151-158
    • /
    • 1996
  • As an approach to design the intelligent controller for an underwater vehicle, this paper will propose a neural controller with the fuzzy weight which can tune the ocntorl rule effectively. The initial weights of th efuzzy-neural controller are constructdd by priori-information based on fuzzy control theory and tuned automatically by learning. The proposed control scheme has two improtnat characteristics of adaptation and learning under the control environment. Also it has the advantage that the precise dynamic characteristics of an underwater vehicle may not be required. The effectiveness of the proposed scheme will be demonstrated by computer simulations of an underwater vehicle.

  • PDF

Neural Network Compensation Technique for Standard PD-Like Fuzzy Controlled Nonlinear Systems

  • Song, Deok-Hee;Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • In this paper, a novel neural fuzzy control method is proposed to control nonlinear systems. A standard PD-like fuzzy controller is designed and used as a main controller for the system. Then a neural network controller is added to the reference trajectories to form a neural-fuzzy control structure and used to compensate for nonlinear effects. Two neural-fuzzy control schemes based on two well-known neural network control schemes, the feedback error learning scheme and the reference compensation technique scheme as well as the standard PD-like fuzzy control are studied. Those schemes are tested to control the angle and the position of the inverted pendulum and their performances are compared.

Adaptive Learning Control of an Uncertain Robot Manipulator Using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 불확실한 로보트 매니퓰레이터의 적응 학습 제어)

  • 김성현;최영길;김용호;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.25-32
    • /
    • 1996
  • This paper will propose the direct adaptive learning control scheme based on adaptive control technique and intelligent control theory for a nonlinear system. Using the proposed learning control scheme, we will apply to on-line control an uncertain but for model perfect matching, it's structure condition is known. The effectiveness of the proposed control schem will be illustrated by simulations of a robot manipulator.

  • PDF

Monotoring Secheme of Laser Welding Interior Defects Using Neural Network (신경회로망을 이용한 레이저 용접 내부결함 모니터링 방법)

  • 손중수;이경돈;박상봉
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.19-31
    • /
    • 1999
  • This paper introduces the monitoring scheme of laser welding quality using neural network. The developed monitoring scheme detects light signal emitting from plasma formed above the weld pool with optic sensor and DSP-based signal processor, and analyzes to give a guidance about the weld quality. It can automatically detect defects of laser weld and further give an information about what kind of defects it is, specially partial penetration and porosity among the interior defects. Those could be detected only by naked eyes or X-ray after welding, which needs more processes and costs in mass production. The monitoring scheme extracts four feature vectors from signal processing results of optical measuring data. In order to classify pattern for extracted feature vectors and to decide defects, it uses single-layer neural network with perceptron learning. The monitoring result using only the first feature vector shows confidence rate in recognition of 90%($\pm$5) and decides whether normal status or defects status in real time.

  • PDF

Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle (K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Dynamic Control of Track Vehicle Using Fuzzy-Neural Control Method (퍼지-뉴럴 제어기법에 의한 궤도차량의 동적 제어)

  • 한성현;서운학;조길수;윤강섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.133-139
    • /
    • 1997
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is propored a learning controller consisting of two neural network-fuzzy based on independent resoning and a connection net with fixed weights to simply the neural network-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle

  • PDF