• 제목/요약/키워드: neural Networks

검색결과 4,858건 처리시간 0.914초

CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발 (Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot)

  • 이사랑;노은솔;홍석무
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.1-8
    • /
    • 2020
  • 건물 내부 공기 순환을 위한 공조 덕트는 장기간 사용 시 오염물질이 내부에 쌓여 인력 또는 로봇이 투입되어 청소가 주기적으로 수행된다. 청소는 작업시간과 인건비 문제를 해결하기 위해 최근 원격 조정으로 로봇을 작동시키는 방법이 사용되고 있다. 하지만 완전 자동화가 아니라 인력 의존적이며 청소 시간 단축에도 한계가 있다. 본 연구는 공조 덕트 청소 로봇 자율 주행을 위해 교차점 검출 알고리듬 개발에 대한 것이다. 자율 주행은 청소 로봇에 장착된 카메라 영상에서 교차점 검출 알고리듬을 통해 추출된 점과 중심점 사이의 거리 및 각도를 계산하여 로봇을 제어하도록 구성된다. 교차점 검출을 위한 데이터는 3D CAD 프로그램을 이용한 공조 덕트 내부 이미지를 Python을 이용해 교차점 좌표 및 두 경계선 각도를 추출하여 생성했다. 검출 알고리듬은 딥러닝 중 CNN 모델이 학습에 사용됐으며 학습 모델은 입력이미지에서 교차점 정보를 추출하며 학습 모델 정확도는 면적과 거리를 이용해 판단했다. 알고리듬 검증을 위해 청소 로봇을 제작했으며 로봇은 몸체, Raspberry Pi, 카메라 및 초음파 센서를 포함한 제어부, 모터와 바퀴를 포함한 구동부로 구성된다. 알고리듬을 탑재한 로봇 청소기 주행 영상을 통해 알고리듬을 검증했다. 향후 공조 덕트뿐만 아니라 에스컬레이터 등 다양한 환경에서 적용 가능할 것으로 기대된다.

HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화 (Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms)

  • 오성권;박호성
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.487-496
    • /
    • 2000
  • 본 논문에서는, HCM 클러스러팅 방법과 유전자 알고리즘을 이용하여 다중 FNN 모델을 동정하고 최적화 한다. 제안된 다중 FNN은 Yamakawa의 FNN을 기본으로 하며, 퍼지 추론 방법으로 간략 추론을, 학습으로는 오류 역전파 알고리즘을 사용한다. 다중 FNN 모델의 구조와 파라미터를 동정하기 위해 HCM 클러스터링과 유전자 알고리즘을 사용한다. 여기서, 시스템 모델링을 위해 데이터 전처리 기능을 수행하는 HCM클러스터링 방법은 I/O 프로세서 공정 데이터를 이용하여 입출력 공간분할에 의한 다중 FNN 구조를 결정하기 위해 사용된다. 또한 유전자 알고리즘을 사용하여 멤버쉽함수의 정점, 학습율, 모멘텀 계수와 같은 다중 FNN 모델의 파라미터들을 동조한다. 모델의 근사화와 일반화 능력 사이에 합히적 균형을 얻기 위해 하중계수를 가진 합성 성능지수를 사용한다. 이 합성 성능지수는 근사화 및 예측 능력사이의 상호 균형과 의존성을 고려한 하중계수를 가진 합성 목적함수를 의미한다. 데이터 개수, 비선형성의 정도에 의존하는 이 합성 목적함수의 하중계수의 선택, 조절을 통하여 최적의 다중 FNN 모델을 설계하는 것이 유용하고 효과적임을 보인다. 제안된 모델의 성능 평가를 위하여 가스로 공정의 시계열 데이터와 비선형 함수의 수치 데이터를 사용한다.

  • PDF

도시기반시설이 공동주택가격에 미치는 영향분석에 관한 연구 - 전력통신시설(변전소)을 중심으로 - (A Study on the Analysis of Apartment Price affected by Urban Infrastructure System - Electricity Substation)

  • 황성덕;정문오;이상엽
    • 한국건설관리학회논문집
    • /
    • 제16권1호
    • /
    • pp.74-81
    • /
    • 2015
  • 도심기반시설은 도시 내 인간의 활동을 위해 필수적으로 공급해야 할 시설이나 도심 내의 입지선정과 관련하여 위험시설로 인식되어 많은 갈등이 야기되고 있다. 대표적인 도심의 통신전력 기반시설인 변전소 역시 전력수요의 증가에 따라 도심지에 반드시 존치해야 함에도 불구하고 사회민원이 발생함에 따라 이러한 갈등을 구체적이고 과학적인 근거에 따라 판단하고 객관적인 해결방안을 도출할 필요가 있게 되었다. 이에 본 연구에서는 아파트 가격을 결정짓는 일반적인 요소들과 아파트 단지와 변전소의 직선상의 거리를 독립변수로 사용하고, 아파트 가격을 종속변수로 단위면적당 매매가를 선정하여, 시설 위치를 포함한 아파트가격 결정요인들이 각각 어떠한 영향을 주었는지를 헤도닉 가격모형을 활용한 회귀분석과 인공신경망 분석을 통해 분석하였다. 결과 일부 대상 변전소의 경우 아파트 단지와 거리가 가까울수록 매매가격이 떨어지며 변전소가 아파트가격에 미치는 영향력의 범위는 600m이내 인 것으로 나타났다. 본 연구에서는 변전소의 입지가 아파트 가격에 영향을 미치는지를 객관적 데이터와범 용적인 모형으로 분석함으로써, 변전소의 입지가 부동산의 경제적 가치를 분석하는 방법적 토대를 제공하였다.

축구 로봇의 공격 의도 추출기 설계 (Development of Attack Intention Extractor for Soccer Robot system)

  • 박해리;정진우;변증남
    • 전자공학회논문지CI
    • /
    • 제40권4호
    • /
    • pp.193-205
    • /
    • 2003
  • 지능 제어, 통신, 컴퓨터 및 센서 기술, 영상 처리, 메카트로닉스 등과 같은 다양한 분야에서 로봇 축구 시스템에 대한 연구가 진행되고 있다. 그중 전략 연구는 대부분 공격 전략 연구에 치중하고 있으며, 점차 지능적인 공격 전략을 구현하는 방향으로 흘러가고 있다. 이에 따라 과거의 단순한 수비 전략으로는 완전한 수비가 불가능하게 되었다. 따라서, 지능적인 공격을 효율적으로 수비할 수 있는 수비 전략이 필요하며, 효율적인 수비를 위하여 공격자 로봇의 의도 추출이 필요하다. 본 논문에서는, 퍼지 최대 최소 신경망을 이용한 축구 로봇의 공격 의도 추출기를 설계하였다. 첫째로 축구 로봇 시스템에서의 의도를 정의하고 의도 추출에 대하여 설명한다. 다음으로 설계한 퍼지 최대 최소 신경망을 이용하여 설계한 축구 로봇의 의도 추출기에 대하여 설명한다. 퍼지 최대 최소 신경망은 패턴분류 방법 중의 하나로 온라인 적용, 짧은 학습 시간, 소프트 결정(soft decision) 등의 많은 장점을 갖고 있다. 따라서, 다이나믹한 환경을 가진 축구 로봇 시스템의 의도 추출에 적합하다. 이 의도 추출기는 상대 팀 로봇이 공격시 어떠한 상황에서 어떠한 행동을 할 것인가를 미리 알아내어 수비 시 이용할 수 있도록 하며, 학습을 통하여 의도 추출을 함으로써 상대 팀 경기를 보고 팀의 전략을 파악하는 전략 분석기로도 사용이 가능하다. 자체 제작한 3대3 로봇 축구 시뮬레이터를 이용하여 시뮬레이션을 하였으며, 학습을 함에 따라서 의도 추출률이 증가함을 확인할 수 있었다.

광섬유 브래그 격자 센서를 이용한 복합재 구조물의 충격 모니터링 기법 연구 (Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors)

  • 장병욱;박상오;이연관;김천곤;박찬익;이봉완
    • Composites Research
    • /
    • 제24권1호
    • /
    • pp.24-30
    • /
    • 2011
  • 복합재 구조물에서 발생하는 저속 충격에 의한 손상은 대부분 복합재의 내부나 충격을 받은 면의 반대 면에서 발생하기 때문에 검출이 쉽지 않아 시간이 지날수록 구조물이 위험에 처할 확률이 높아진다. 하지만 기존의 비파괴검사 방법은 일정한 주기에 따라 수행되기 때문에 즉각적으로 충격 손상을 감지할 수 없다는 단점이 있다. 따라서 최근에는 이러한 단점을 극복하고자 비파괴검사 장비를 구조물 내에 탑재하여 실시간으로 구조물의 건전성을 확인하는 개념인 구조 건전성 모니터링에 관한 연구가 활발히 진행되고 있다. 그 중의 하나인 충격 모니터링 시스템은 운용 중에 발생한 충격 이벤트를 감지하고 그 위치 및 손상 정도에 대한 정보를 제공해 주어야 한다. 이를 위한 첫 번째 단계로 본 연구에서는 복합재 평판 및 복잡한 복합재 시편 구조물에 FBG 센서를 부착하여 충격 위치 검출 시험을 수행하였고, 이와 같은 복합재 시편에 대해 충격 파손 시험을 수행하여 손상 발생 유무를 예측하는 시험을 수행하였다. 저속 충격에 의해 발생하는 음향 파는 (주)파어버프로에서 개발한 고속 FBG interrogator를 사용하여 4개의 다중화된 FBG 센서로부터 동시에 취득하였고, 신경회로망을 이용한 학습을 거쳐 충격 발생 위치를 검출하였다. 또한 충격 파손 시험으로부터 취득한 음향 파의 웨이블릿 변환을 통해 충격 손상의 발생 유무 예측 가능성을 확인하였다.

수면단계 분석을 위한 특징 선택 알고리즘 설계 (The Design of Feature Selecting Algorithm for Sleep Stage Analysis)

  • 이지은;유선국
    • 전자공학회논문지
    • /
    • 제50권10호
    • /
    • pp.207-216
    • /
    • 2013
  • 본 연구의 목적은 수면상태 분석을 위한 분류기를 설계해줌과 동시에 생체신호를 기반으로 하여 수면상태 판별에 유효한 주요 특징벡터들을 추출함에 있다. 수면은 인간의 삶에 중요한 영향을 끼친다. 따라서 사람들이 수면부족 혹은 수면장애를 겪게 되면 집중력 감퇴, 인지기능 장애 등의 문제를 가질 우려가 생기게 되므로, 수면단계 판별에 관한 많은 연구들이 이루어지고 있다. 본 연구에서는 피험자가 수면을 취하는 동안 피험자의 생체신호를 획득하였다. 획득 된 생체신호로부터 필터링 등의 전처리 과정을 통하여 특징들을 추출하여 주었다. 추출된 특징들은 유전 알고리즘과 신경망을 결합하여 만든 새로운 알고리즘의 입력으로 사용되었으며, 알고리즘은 수면단계 분석을 위하여 높은 가중치를 가지는 특징을 선택하여 주었다. 이에 따른 결과로 뇌파 신호와 심전도 신호 모두 사용 시 알고리즘의 정확도는 약 90.26%가 나왔으며, 선택되어진 특징은 뇌파 신호의 ${\alpha}$파와 ${\delta}$파의 주파수 파워와 심전도 신호의 SDNN(Standard deviation of all normal RR intervals)이다. 선택된 특징은 수면상태를 분류하는데 중요한 역할을 함을 알고리즘을 반복적으로 수행하여 확인하였고, 이 연구는 추후 수면장애의 진단 혹은 수면분석의 지침을 만드는데 사용가능할 것으로 사료된다.

미국 무역정책 변화가 국내 중공업 기업의 경영성과에 미치는 영향 (Predicting Performance of Heavy Industry Firms in Korea with U.S. Trade Policy Data)

  • 박진수;김경호;김범수;서지혜
    • 한국전자거래학회지
    • /
    • 제22권4호
    • /
    • pp.71-101
    • /
    • 2017
  • 미국 무역위원회(United States International Trade Commission)는 불공정 무역으로 인해 무역 질서를 해치는 경우 상계 관세(Countervailing Duties)와 반덤핑 관세(Antidumping Duties) 등을 징수하고 있다. 본 연구에서는 상기 연구 목적을 달성하기 위하여 상계 관세 및 반덤핑 관세와 관련된 데이터를 수집해 양적 분석을 수행하였다. 몇 가지 데이터 마이닝(Data mining) 기법을 활용한 본 연구의 양적 분석 결과, 미국의 상계 관세 및 반덤핑 관세 부과 경향이 우리나라의 중공업 산업의 성장률에 유의한 영향을 미친다고 잠정적으로 결론 내릴 수 있었다. 본 연구의 가장 큰 기여점은 '미국의 보호주의 무역기조가 울산지역의 주력산업의 경영성과에 부정적인 영향을 미칠 수 있다'는 직관적인 명제를 과거 데이터를 가지고 객관적으로 검증해보고 그 영향 정도를 계량화해 측정할 수 있도록 한 것이라고 할 수 있다.

기능적 자기공명영상을 이용한 단기기억 뇌기능 매핑연구 (Working Memory Mapping Analysis using fMRI)

  • 주라형;최보영;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제16권1호
    • /
    • pp.32-38
    • /
    • 2005
  • 작동기억 및 얼굴 영상에 대한 정보 처리 과정의 장애는 정신분열병 환자에서 나타나는 광범위한 인지기능 장애 중의 하나이다. 본 연구는 기능적 자기공명영상기법을 이용하여 정신분열병 환자군과 정상 대조군 간의 얼굴 영상의 작동기억에 관여하는 뇌 활성의 차이를 분석하고자 하였다 10명의 정신분열병 환자와 10명의 정상 대조군을 대상으로 선정하였다. 얼굴영상 자극을 이용한 1-back 작동기억 파라다임을 수행하는 동안 뇌 피질의 활성을 측정하기 위해 기능적 자기공명영상으로 두 군간의 뇌 활성의 차이를 SPM을 사용하여 분석하였다. 정신분열병 환자군은 정상대조군에 비해 작동기억 수행 점수가 유의하게 저하되어 있었다 환자군에서 대뇌의 좌측 방추상 이랑, 우측 위 전두 이랑, 양측 중간 전두 이랑, 도, 좌측 중간 측두 이랑, 설전부 피질과 소뇌의 사각엽과 충부의 활성이 감소되어 있었다. 반면, 외측 전전두 피질과 두정엽의 활성이 증가되었고, 또한 두 군 모두에서 우측반구의 활성이 증가되어 있었다. 정신분열병 환자에서 좌측 방추상 이랑의 활성이 감소된 것은 얼굴 영상에 대한 정보 처리 과정의 장애를 의미하며 기능적 자기공명영상분석법으로 작동기억능력의 유용성을 평가하였다.

  • PDF

메콩강 유출모의를 위한 물리적 및 데이터 기반 모형의 비교·분석 (Comparison of physics-based and data-driven models for streamflow simulation of the Mekong river)

  • 이기하;정성호;이대업
    • 한국수자원학회논문집
    • /
    • 제51권6호
    • /
    • pp.503-514
    • /
    • 2018
  • 최근 기후변화 및 유역개발로 인하여 메콩강 유역의 수문환경이 급격히 변화하고 있으며, 메콩강을 공유하는 국가의 수재해 예방 및 지속가능한 수자원개발을 위해서는 메콩강 주요지점에서의 유량 정보의 분석 및 예측이 요구된다. 본 연구에서는 물리적 기반의 수문모형인 SWAT과 데이터기반 딥러닝 알고리즘인 LSTM을 이용하여 메콩강 하류 Kratie 지점의 유출모의를 수행하고, 유출모의 정확도 및 두 가지 방법론의 장 단점을 비교 분석한다. SWAT 모형의 구축을 위해 범용 입력자료(지형: HydroSHED, 토지이용: GLCF-MODIS, 토양: FAO-Soil map, 강우: APHRODITE 등)을 이용하였으며 warming-up 및 매개변수 보정 후 2003~2007년 일유량 모의를 수행하였다. LSTM을 이용한 유출모의의 경우, 딥러닝 오픈소스 라이브러리인 TensorFlow를 활용하여 Kratie 지점기준 메콩강 상류 10개 수위관측소의 두 기간(2000~2002, 2008~2014) 일수위 정보만을 이용하여 심층신경망을 학습하고, SWAT 모형과 마찬가지로 2003~2007년을 대상으로 Kratie 지점에 대한 일수위 모의 후 수위-유량관계곡선식을 이용하여 유출량으로 환산하였다. 두 모형의 모의성능 비교 검토를 위하여 모의기간에 대해 NSE (Nash-Sutcliffe Efficiency)을 산정한 결과, SWAT은 0.9, LSTM은 보다 높은 0.99의 정확도를 나타내는 것으로 분석되었다. 메콩강과 같은 대유역의 특정 지점에 대한 수문시계열 자료의 모의를 위해서는 다양한 입력자료를 요구하는 물리적 수문모형 대신 선행 시계열자료의 변동성을 기억 학습하여 이를 예측에 반영하는 LSTM 기법 등 데이터기반의 심층신경망 모형의 적용이 가능할 것으로 판단된다.

퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계 (Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA)

  • 김봉연;오성권;김진율
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2016
  • 본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.