• Title/Summary/Keyword: network-based business

Search Result 1,402, Processing Time 0.028 seconds

RGF: Receiver-based Greedy Forwarding for Energy Efficiency in Lossy Wireless Sensor Networks

  • Hur, In;Kim, Moon-Seong;Seo, Jae-Wan;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.529-546
    • /
    • 2010
  • Greedy forwarding is the key mechanism of geographic routing and is one of the protocols used most commonly in wireless sensor networks. Greedy forwarding uses 1-hop local information to forward packets to the destination and does not have to maintain the routing table, and thus it takes small overhead and has excellent scalability. However, the signal intensity reduces exponentially with the distance in realistic wireless sensor network, and greedy forwarding consumes a lot of energy, since it forwards the packets to the neighbor node closest to the destination. Previous proposed greedy forwarding protocols are the sender-based greedy forwarding that a sender selects a neighbor node to forward packets as the forwarding node and hence they cannot guarantee energy efficient forwarding in unpredictable wireless environment. In this paper, we propose the receiver-based greedy forwarding called RGF where one of the neighbor nodes that received the packet forwards it by itself. In RGF, sender selects several energy efficient nodes as candidate forwarding nodes and decides forwarding priority of them in order to prevent unnecessary transmissions. The simulation results show that RGF improves delivery rate up to maximum 66.8% and energy efficiency, 60.9% compared with existing sender-based greedy forwarding.

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

Technology Convergence Analysis by IPC Code-Based Social Network Analysis of Healthcare Patents (헬스케어 특허의 IPC 코드 기반 사회 연결망 분석(SNA)을 이용한 기술 융복합 분석)

  • Shim, Jaeruen
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.308-314
    • /
    • 2022
  • This study deals with the technology Convergence Analysis by IPC Code-Based Social Network Analysis of Healthcare Patents filed in Korea. The relationship between core technologies is visualized using Social Network Analysis. At the subclass level of healthcare patents, 1,155 cases (49.4%) of patents with complex IPC codes were investigated, and as a result of Social Network Analysis on them, the IPC codes with the highest Degree Centrality were A61B, G16H, and G06Q, in that order. The IPC codes with the highest Betweenness Centrality are in the order of A61B, G16H, and G06Q. In addition, it was confirmed that healthcare patents consist of two large technology clusters. Cluster-1 corresponds to related business models centered on A61B, G16H and G06Q, and Cluster-2 is consisting of H04L, H04W and H04B. The technology convergence core pairs of the healthcare patent is [G16H-A61B] and [G16H-G06Q] in Cluster-1, and [H04L-H04W] in Cluster-2. The results of this study can contribute to the development of core technologies for healthcare patents.

Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores (시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측)

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.155-170
    • /
    • 2018
  • Predicting a company's financial bankruptcy is traditionally one of the most crucial forecasting problems in business analytics. In previous studies, prediction models have been proposed by applying or combining statistical and machine learning-based techniques. In this paper, we propose a novel intelligent prediction model based on the simulated annealing which is one of the well-known optimization techniques. The simulated annealing is known to have comparable optimization performance to the genetic algorithms. Nevertheless, since there has been little research on the prediction and classification of business decision-making problems using the simulated annealing, it is meaningful to confirm the usefulness of the proposed model in business analytics. In this study, we use the combined model of simulated annealing and machine learning to select the input features of the bankruptcy prediction model. Typical types of combining optimization and machine learning techniques are feature selection, feature weighting, and instance selection. This study proposes a combining model for feature selection, which has been studied the most. In order to confirm the superiority of the proposed model in this study, we apply the real-world financial data of the Korean companies and analyze the results. The results show that the predictive accuracy of the proposed model is better than that of the naïve model. Notably, the performance is significantly improved as compared with the traditional decision tree, random forests, artificial neural network, SVM, and logistic regression analysis.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

A Study on the Factors Influencing Technology Innovation Capability on the Knowledge Management Performance of the Company: Focused on Government Small and Medium Venture Business R&D Business (기술혁신역량이 기업의 지식경영성과에 미치는 요인에 관한 연구: 정부 중소벤처기업 R&D사업을 중심으로)

  • Seol, Dong-Cheol;Park, Cheol-Woo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.4
    • /
    • pp.193-216
    • /
    • 2020
  • Due to the recent mid- to long-term slump and falling growth rates in the global economy, interest in organizational structures that create new products or services as a new alternative to survive and develop in an opaque environment both internally and externally, and enhance organizational sustainability through changes in production methods and business innovation is increasing day by day. In this atmosphere, we agree that the growth of small and medium-sized venture companies has a significant impact on the national economy, and various efforts are being made to enhance the technological innovation capabilities of the members so that these small and medium-sized venture companies can enhance and sustain their performance. The purpose of this study is also to investigate how the technological innovation capabilities of small and medium-sized venture companies correlate with the performance of knowledge management and to analyze the role of network capabilities to organize the strategic activities of enterprise to obtain the resources and organizational capabilities to be used for value creation from external networks. In other words, research was conducted on the impact of technological innovation capabilities of small and medium venture companies on knowledge management performance by using network capabilities as parameters. Therefore, in this study, we would like to verify the hypothesis that innovation capabilities will have a positive impact on knowledge management performance by using network capabilities of small and medium venture companies. Economic activities based on technological innovation capabilities should respond quickly to new changes in an environment where uncertainty has increased, and lead to macro-economic growth and development as well as overcoming long-term economic downturns so that they can become the nation's new growth engine as well as sustainable growth and survival of the organization. In addition, this study was conducted by setting the most important knowledge management performance within the organization as a dependent variable. As a result, R&D and learning capabilities among technological innovation capabilities have no impact on financial performance. In contrast, it was shown that corporate innovation activities have a positive impact on both financial and non-financial performance. The fact that non-financial factors such as quality and productivity improvement are identified in the management of small and medium-sized venture companies utilizing their technological innovation capabilities is contrary to a number of studies by those corporate innovation activities affect financial performance during prior research. The reason for this result is that research companies have been out of start-up companies for more than seven years, but sales are less than 10 billion won, and unlike start-up companies, R&D and learning capabilities have more positive effects on intangible non-financial performance than financial performance. Corporate innovation activities have been shown to have a positive (+) impact on both financial and non-financial performance, while R&D and learning capabilities have a positive (+) impact on financial performance by parameters of network capability. Corporate innovation activities have been shown to have no impact on both financial and non-financial performance, and R&D and learning capabilities have no impact on non-financial performance. It could be seen that the parameter effects of network competency are limited to when R&D and learning competencies are derived from quantitative financial performance. It could be seen that the parameter effects of network competency are limited to when R&D and learning competencies are derived from quantitative financial performance.

Status and Characteristics of the Newly Established Cooperatives in Agricultural Sector (농업분야 신생 협동조합의 현황과 유형별 특징)

  • Choi, Kyung Sik;Nam, Gi Pou;Hwang, Dae Yong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.21 no.4
    • /
    • pp.967-1006
    • /
    • 2014
  • This study attempted to provide policy recommendations in promoting new cooperatives established in agriculture based on the 2012 Cooperative Act. A questionnaire survey was conducted with 195 newly established cooperatives as the policy target of this study. The new cooperatives were classified as three kinds namely as 'Business' Cooperatives', 'Consumers' Cooperatives', 'Social Cooperatives' based on their member attributes and objectives. Interesting to note that, all of these new cooperatives born by the new Act has taken the marketing business as their main stream business. Among the three types, 'Business Cooperatives' are ranked the highest amount of capital shares per person in average, having about 30 members in size. In categorization, 'Business Cooperatives' include farmer cooperatives as majority and employee cooperatives. They are usually involved in both production and marketing and even in processing activities, and have tried to secure their business performance by e-commerce and stable business contracts. Their diverse activities are highly associated with their local community. Consumers' Cooperatives include consumer cooperatives and stakeholder cooperatives in achieving welfare of members. This type has lower share in capital but has over 30 members in a cooperative, taking marketing (distribution) business as main and often take advantage of their social network and physical store. Regional relationships are less than producer cooperatives. 'Social Cooperatives' are established by public interest and have around 10 members and lowest per capital. their business and community activity is similar to the consumer cooperatives. This study recommends the needs of designing suitable business models by these three types of cooperatives in the future, while appropriating their membership size for their tangible business operations. The government policy direction should aim to develop their new business opportunities and its management stabilization, especially in conjunction with the existing agricultural cooperatives (Nonghyup). It must be rather than to provide simply policy supports for establishment. An in-depth study is recommended in this regard.

Revitalization Plan and Value of Social Network Service in the Business Organization (기업조직 내 소셜 미디어 서비스 활용의 가치 제고 및 활성화 방안)

  • Kim, Dong-Hyun;Seo, Hyun-Shik;Kim, Hyung-Joon;Lee, Bong-Gyou
    • The KIPS Transactions:PartD
    • /
    • v.18D no.4
    • /
    • pp.275-286
    • /
    • 2011
  • The purpose of this study is to find the beneficial plan for business success by the advantage of social media service in the business organization. There is few research for applying social media on a variety of fields in business organization although many companies are trying to find the way for its application. Hence, this study identifies the possibility for the utilization of social media services, and it also finds the plan for their effective application. The social relationship is created by increasing communications between users of social media service. The research model is established on the basis of the hypothesis that the social relationship affects knowledge share, pursuit of ego, social participation, amusement. To maximize the impact of results, the research was conducted on the basis of the target on two groups including the business men and non-business men who use social media services. As results of the research, the business men tend to appeal their impression based on sharing knowledge with anonymous people. Also, it is necessary to make a social participation to a management participation, and to utilize the social media in the organization by including amusement to its function. This research is expected to have significant implication to companies which wants to apply social media services in the future.

Smart Cold-Chain Monitoring Automation System Architecture based on Internet of Things (사물 인터넷 기반 스마트 콜드 체인 모니터링 자동화 시스템 구조)

  • Kim, Seok-Hoon;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.351-356
    • /
    • 2014
  • Generally, although securing the condition and location of container freights or normal freights, which load a fresh goods, has been a very important issue in the cold-chain system implementations, it has not gotten out of the traditional methods in the related business world yet. To solve this problem, we propose the designing method and architecture which can be used to implement a smart cold-chain monitoring automation systems. The proposed system architecture is based on the oneM2M standards, and it has 3 layers and entities, which can be implemented to S/W and H/W, network services layer and entity, common services layer and entity, application layer and entity. Based on this architecture, we will not only expect an innovative retrenchment of distribution cost, but also automatically secure the freight condition and location.

The Implementation of Communication Emulate Based on Component For Automation System (자동화시스템을 위한 컴포넌트 기반의 통신 Emulate 구현)

  • Jeong Hwa-Young
    • Journal of Digital Contents Society
    • /
    • v.3 no.2
    • /
    • pp.245-254
    • /
    • 2002
  • Currently, communication field for automation system can be divided by simple serial communication for communication between each internal devices and network base remote control system that is based on TCP/IP. In spite of great development of network, communication part for internal control is using simple RS232 base until present. Also, development techniques of system developed by object oriented program in modular programming techniques of each function unit. Currently, it developed by component base development technique that is parts unit of software. This is presented by the new alternative of software development techniques as techniques to composition independent operation unit including business logic and is connected to development of new system. Therefore, this research implemented internal communication Emulate in RS232C based on GUI that apply development techniques of component base. that is, I maked component to commnication control part between receiving and sending and, as composite it, Control part did to handling between send and receive data.

  • PDF