• Title/Summary/Keyword: network threat detection

Search Result 128, Processing Time 0.024 seconds

An Extended Work Architecture for Online Threat Prediction in Tweeter Dataset

  • Sheoran, Savita Kumari;Yadav, Partibha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 2021
  • Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.

Network Intrusion Detection with One Class Anomaly Detection Model based on Auto Encoder. (오토 인코더 기반의 단일 클래스 이상 탐지 모델을 통한 네트워크 침입 탐지)

  • Min, Byeoungjun;Yoo, Jihoon;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Recently network based attack technologies are rapidly advanced and intelligent, the limitations of existing signature-based intrusion detection systems are becoming clear. The reason is that signature-based detection methods lack generalization capabilities for new attacks such as APT attacks. To solve these problems, research on machine learning-based intrusion detection systems is being actively conducted. However, in the actual network environment, attack samples are collected very little compared to normal samples, resulting in class imbalance problems. When a supervised learning-based anomaly detection model is trained with such data, the result is biased to the normal sample. In this paper, we propose to overcome this imbalance problem through One-Class Anomaly Detection using an auto encoder. The experiment was conducted through the NSL-KDD data set and compares the performance with the supervised learning models for the performance evaluation of the proposed method.

A Study on the Improvement of Bayesian networks in e-Trade (전자무역의 베이지안 네트워크 개선방안에 관한 연구)

  • Jeong, Boon-Do
    • International Commerce and Information Review
    • /
    • v.9 no.3
    • /
    • pp.305-320
    • /
    • 2007
  • With expanded use of B2B(between enterprises), B2G(between enterprises and government) and EDI(Electronic Data Interchange), and increased amount of available network information and information protection threat, as it was judged that security can not be perfectly assured only with security technology such as electronic signature/authorization and access control, Bayesian networks have been developed for protection of information. Therefore, this study speculates Bayesian networks system, centering on ERP(Enterprise Resource Planning). The Bayesian networks system is one of the methods to resolve uncertainty in electronic data interchange and is applied to overcome uncertainty of abnormal invasion detection in ERP. Bayesian networks are applied to construct profiling for system call and network data, and simulate against abnormal invasion detection. The host-based abnormal invasion detection system in electronic trade analyses system call, applies Bayesian probability values, and constructs normal behavior profile to detect abnormal behaviors. This study assumes before and after of delivery behavior of the electronic document through Bayesian probability value and expresses before and after of the delivery behavior or events based on Bayesian networks. Therefore, profiling process using Bayesian networks can be applied for abnormal invasion detection based on host and network. In respect to transmission and reception of electronic documents, we need further studies on standards that classify abnormal invasion of various patterns in ERP and evaluate them by Bayesian probability values, and on classification of B2B invasion pattern genealogy to effectively detect deformed abnormal invasion patterns.

  • PDF

Phishing Attack Detection Using Deep Learning

  • Alzahrani, Sabah M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.213-218
    • /
    • 2021
  • This paper proposes a technique for detecting a significant threat that attempts to get sensitive and confidential information such as usernames, passwords, credit card information, and more to target an individual or organization. By definition, a phishing attack happens when malicious people pose as trusted entities to fraudulently obtain user data. Phishing is classified as a type of social engineering attack. For a phishing attack to happen, a victim must be convinced to open an email or a direct message [1]. The email or direct message will contain a link that the victim will be required to click on. The aim of the attack is usually to install malicious software or to freeze a system. In other instances, the attackers will threaten to reveal sensitive information obtained from the victim. Phishing attacks can have devastating effects on the victim. Sensitive and confidential information can find its way into the hands of malicious people. Another devastating effect of phishing attacks is identity theft [1]. Attackers may impersonate the victim to make unauthorized purchases. Victims also complain of loss of funds when attackers access their credit card information. The proposed method has two major subsystems: (1) Data collection: different websites have been collected as a big data corresponding to normal and phishing dataset, and (2) distributed detection system: different artificial algorithms are used: a neural network algorithm and machine learning. The Amazon cloud was used for running the cluster with different cores of machines. The experiment results of the proposed system achieved very good accuracy and detection rate as well.

RDNN: Rumor Detection Neural Network for Veracity Analysis in Social Media Text

  • SuthanthiraDevi, P;Karthika, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3868-3888
    • /
    • 2022
  • A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.

Preprocessor Implementation of Open IDS Snort for Smart Manufacturing Industry Network (스마트 제조 산업용 네트워크에 적합한 Snort IDS에서의 전처리기 구현)

  • Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1313-1322
    • /
    • 2016
  • Recently, many virus and hacking attacks on public organizations and financial institutions by internet are becoming increasingly intelligent and sophisticated. The Advanced Persistent Threat has been considered as an important cyber risk. This attack is basically accomplished by spreading malicious codes through complex networks. To detect and extract PE files in smart manufacturing industry networks, an efficient processing method which is performed before analysis procedure on malicious codes is proposed. We implement a preprocessor of open intrusion detection system Snort for fast extraction of PE files and install on a hardware sensor equipment. As a result of practical experiment, we verify that the network sensor can extract the PE files which are often suspected as a malware.

Malicious Insider Detection Using Boosting Ensemble Methods (앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법)

  • Park, Suyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.

A Study on the Insider Behavior Analysis Using Machine Learning for Detecting Information Leakage (정보 유출 탐지를 위한 머신 러닝 기반 내부자 행위 분석 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, we design and implement PADIL(Prediction And Detection of Information Leakage) system that predicts and detect information leakage behavior of insider by analyzing network traffic and applying a variety of machine learning methods. we defined the five-level information leakage model(Reconnaissance, Scanning, Access and Escalation, Exfiltration, Obfuscation) by referring to the cyber kill-chain model. In order to perform the machine learning for detecting information leakage, PADIL system extracts various features by analyzing the network traffic and extracts the behavioral features by comparing it with the personal profile information and extracts information leakage level features. We tested various machine learning methods and as a result, the DecisionTree algorithm showed excellent performance in information leakage detection and we showed that performance can be further improved by fine feature selection.

A Host-based Intrusion Detection Data Analysis Comparison (호스트 기반 침입 탐지 데이터 분석 비교)

  • Park, DaeKyeong;Shin, Dongkyoo;Shin, Dongil
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.490-493
    • /
    • 2020
  • 오늘날 정보통신 기술이 급격하게 발달하면서 IT 인프라에서 보안의 중요성이 높아졌고 동시에 APT(Advanced Persistent threat)처럼 고도화되고 다양한 형태의 공격이 증가하고 있다. 점점 더 고도화되는 공격을 조기에 방어하거나 예측하는 것은 매우 중요한 문제이며, NIDS(Network-based Intrusion Detection System) 관련 데이터 분석만으로는 빠르게 변형하는 공격을 방어하지 못하는 경우가 많이 보고되고 있다. 따라서 HIDS(Host-based Intrusion Detection System) 데이터 분석을 통해서 위와 같은 공격을 방어하는데 현재는 침입탐지 시스템에서 생성된 데이터가 주로 사용된다. 하지만 데이터가 많이 부족하여 과거에 생성된 DARPA(Defense Advanced Research Projects Agency) 침입 탐지 평가 데이터 세트인 KDD(Knowledge Discovery and Data Mining) 같은 데이터로 연구를 하고 있어 현대 컴퓨터 시스템 특정을 반영한 데이터의 비정상행위 탐지에 대한 연구가 많이 부족하다. 본 논문에서는 기존에 사용되었던 데이터 세트에서 결여된 스레드 정보, 메타 데이터 및 버퍼 데이터를 포함하고 있으면서 최근에 생성된 LID-DS(Leipzig Intrusion Detection-Data Set) 데이터를 이용한 분석 비교 연구를 통해 앞으로 호스트 기반 침입 탐지 데이터 시스템의 나아갈 새로운 연구 방향을 제시한다.

Face Mask Detection Model Using Convolution Neural Network

  • A. A. Abd El-Aziz; Nesrine A. Azim;Mahmood A. Mahmood;Hamoud Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.91-96
    • /
    • 2024
  • Corona Virus is a big threat to humanity. Now, the whole world is struggling to reduce the spread of Corona virus. Wearing masks is one of the practices that help to control the spread of the virus according to the world health organization. However, ensuring all people wear facemask is not an easy task. In this paper, we propose a simple and effective model for real-time monitoring using the convolution neural network to detect whether an individual wears a face mask or not. The model is trained, validated, tested upon two datasets. Corresponding to dataset 1, the accuracy of the model was 95.77% and, it was 94.58% for dataset 2.