• Title/Summary/Keyword: network theory

Search Result 1,839, Processing Time 0.034 seconds

Temperature Inference System by Rough-Neuro-Fuzzy Network

  • Il Hun jung;Park, Hae jin;Kang, Yun-Seok;Kim, Jae-In;Lee, Hong-Won;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.296-301
    • /
    • 1998
  • The Rough Set theory suggested by Pawlak in 1982 has been useful in AI, machine learning, knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning. etc. The main advantages of rough set are that it does not need any preliminary or additional information about data and reduce the superfluous informations. but it is a significant disadvantage in the real application that the inference result form is not the real control value but the divided disjoint interval attribute. In order to overcome this difficulty, we will propose approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal rule base from lots of input/output datum. These results are applied to the rule construction for infering the temperatures of refrigerator's specified points.

  • PDF

A Study on the Injection Molding for the Light Guide Plate of a Small Sized LCD (2) : Influences of Processing Conditions on the Brightness (소형 LCD 도광판의 사출성형에 관한 연구 (2) : 공정조건이 휘도에 미치는 영향)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.341-348
    • /
    • 2002
  • For the light guide plate of the TFT-LCD, there have been increasing demands for higher brightness, thin and light-weight design, and lower power consumption. To meet these demands, a micro-prism-type frontlight that integrates a prismatic sheet and a light-guiding plate has been developed. In this paper, the influences of processing conditions on the brightness were studied lot the injection molding of the light guide plate. Based on the experiment with an actual mold, the design of experiments and the neural network theory were used lot choosing the optimal processing parameters to increase the brightness and the uniformity. The verification experiment also showed that the brightness and the uniformity were increased dramatically with the chosen processing conditions.

Automated Structural Design System Using Fuzzy Theory and Neural Network (피지이론과 신경망을 이용한 구조설계의 자동화 시스템)

  • Lee, Joon-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.236-243
    • /
    • 1998
  • 퍼지 이론과 계산기하학적 수법에 의한 자동요소 생성법, 해석코드 및 상용 솔리드 모델러를 유기적으로 통합한 자동화된 설계시스템을 개발하였다. 본 시스템은 여러 가지 복합현상과 관련된 실제 구조물에 대한 설계기능을 갖고 있다. 정전장 해석, 변형해석 및 모드해석 등과 같은 해석하고자 하는 물리적인 현상에 의존한 형상모델이 자동적으로 유한요소모델로 변환되어 해석을 수행한다. 또한 신경망의 기능을 도입, 통합시킴으로써 설계해의 영역을 유용하게 제시하여 준다. 개발한 시스템은 정전 마이크로머쉰의 성능 평가에 적용하여 그 효용성을 검증하였다.

  • PDF

Implementation and Performance Evaluation of a Firm's Green Supply Chain Management under Uncertainty

  • Lin, Yuanhsu;Tseng, Ming-Lang;Chiu, Anthony S.F.;Wang, Ray
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.15-28
    • /
    • 2014
  • Evaluation of the implementation and performance of a firm's green supply chain management (GSCM) is an ongoing process. Balanced scorecard is a multi-criteria evaluation concept that highlights implementation and performance measures. The literature on the framework is abundant literature but scarce on how to build a hierarchical framework under uncertainty with dependence relations. Hence, this study proposes a hybrid approach, which includes applied interpretive structural modeling to build a hierarchical structure and uses the analytic network process to analyze the dependence relations. Additionally, this study applies the fuzzy set theory to determine linguistic preferences. Twenty dependence criteria are evaluated for a GSCM implemented firm in Taiwan. The result shows that the financial aspect and life cycle assessment are the most important performance and weighted criteria.

A Study on Analysis of Cases of Application of Emotion Architecture (Emotion Architecture 적용 사례 분석에 관한 연구)

  • 윤호창;오정석;전현주
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.447-453
    • /
    • 2003
  • Emotion Technology is used in many field such as computer A.I., graphics, robot, and interaction with agent. We focus on the theory, the technology and the features in emotion application. Firstly in the field of theory, there are psychological approach, behavior-based approach, action-selection approach. Secondly in the field of implementation technologies use the learning algorithm, self-organizing map of neural network and fuzzy cognition maps. Thirdly in the field of application, there are software agent, agent robot and entrainment robot. In this paper, we research the case of application and analyze emotion architecture.

  • PDF

Stereo vision Techniques for Correct extract of Moving object (이동물체의 정확한 추출을 위한 스테레오 알고리즘)

  • Kim, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2531-2533
    • /
    • 2005
  • The proposed neural network technique is the real time computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objects during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of objects. All of therm request much memory space and time. Therefore the most reliable neural-network algorithm is drived for real-time matching of obejects, which is composed of a dynamic programming algorithm based on sequence matching techniques in moving objects.

  • PDF

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

Fault Diagnosis of Induction Motors Using Data Fusion of Vibration and Current Signals (진동 및 전류신호의 데이터융합을 이용한 유도전동기의 결함진단)

  • 김광진;한천
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1091-1100
    • /
    • 2004
  • This paper presents an approach for the monitoring and detection of faults in induction machine by using data fusion technique and Dempster-Shafer theory Features are extracted from motor stator current and vibration signals. Neural network is trained and Hosted by the selected features of the measured data. The fusion of classification results from vibration and current classifiers increases the diagnostic accuracy. The efficiency of the proposed system is demonstrated by detecting motor electric and mechanical faults originated from the induction motors. The results of the test confirm that the proposed system has potential for real time application.

Utilization of support vector machine for prediction of fracture parameters of concrete

  • Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2012
  • This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.

A self-learning rule-based assembly algorithm (자기학습 규칙베이스 조립알고리즘)

  • 박용길;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1072-1077
    • /
    • 1992
  • In ths paper a new active assembly algorithm for chamferless precision parts mating, is considered. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly mehtod alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as imperfect knowledge of the parts being assembled as well as the limitation of the devices performing the assebled as well as the limitation of the devices performing the assembly. To cope with these problems, a self-learning rule-based assembly algorithm is proposed by intergaring fuzzy set theory and neural network. In this algortihm, fuzzy set theory copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly schemen so as to learn fuzzy rules form experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly algorithm is evaluated through a series of experiments. The results show that the self-learning fuzzy assembly scheme can be effecitively applied to chamferless precision parts mating.

  • PDF