• Title/Summary/Keyword: network storage

Search Result 1,087, Processing Time 0.026 seconds

Routing optimization algorithm for logistics virtual monitoring based on VNF dynamic deployment

  • Qiao, Qiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1708-1734
    • /
    • 2022
  • In the development of logistics system, the breakthrough of important technologies such as technology platform for logistics information management and control is the key content of the study. Based on Javascript and JQuery, the logistics system realizes real-time monitoring, collection of historical status data, statistical analysis and display, intelligent recommendation and other functions. In order to strengthen the cooperation of warehouse storage, enhance the utilization rate of resources, and achieve the purpose of real-time and visual supervision of transportation equipment and cargo tracking, this paper studies the VNF dynamic deployment and SFC routing problem in the network load change scenario based on the logistics system. The BIP model is used to model the VNF dynamic deployment and routing problem. The optimization objective is to minimize the total cost overhead generated by each SFCR. Furthermore, the application of the SFC mapping algorithm in the routing topology solving problem is proposed. Based on the concept of relative cost and the idea of topology transformation, the SFC-map algorithm can efficiently complete the dynamic deployment of VNF and the routing calculation of SFC by using multi-layer graph. In the simulation platform based on the logistics system, the proposed algorithm is compared with VNF-DRA algorithm and Provision Traffic algorithm in the network receiving rate, throughput, path end-to-end delay, deployment number, running time and utilization rate. According to the test results, it is verified that the test results of the optimization algorithm in this paper are obviously improved compared with the comparison method, and it has higher practical application and promotion value.

Fine Grained Security in Cloud with Cryptographic Access Control

  • Aparna Manikonda;Nalini N
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.123-127
    • /
    • 2024
  • Cloud computing services has gained increasing popularity in recent years for supporting various on demand and scalable services for IT consumers where there is a need of less investment towards infrastructure. While storage architecture of cloud enjoys a more robust and fault-tolerant cloud computing network, such architecture also poses a number of security challenges especially when applied in applications related to social networks, Financial transactions, etc. First, as data are stored and maintained by individual virtual machines so Cloud resources are prone to hijacked. Such attacks allow attackers to create, modify and delete machine images, and change administrative passwords and settings successfully. hence, it is significantly harder to ensure data security. Second, Due to dynamic and shared nature of the Cloud, data may be compromised in many ways. Last but not least, Service hijacking may lead to redirect client to an illegitimate website. User accounts and service instances could in turn make a new base for attackers. To address the above challenges, we propose in this paper a distributed data access control scheme that is able to fulfil fine-grained access control over cloud data and is resilient against strong attacks such as compromise and user colluding. The proposed framework exploits a novel cryptographic primitive called attribute-based encryption (ABE), tailors, and adapts it for cloud computing with respect to security requirements

Development of the software for high speed data transfer of the high-speed, large capacity data archive system for the storage of the correlation data from Korea-Japan Joint VLBI Correlator (KJJVC)

  • Park, Sun-Youp;Kang, Yong-Woo;Roh, Duk-Gyoo;Oh, Se-Jin;Yeom, Jae-Hwan;Sohn, Bong-Won;Yukitoshi, Kanya;Byun, Do-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.37.2-37.2
    • /
    • 2008
  • Korea-Japan Joint VLBI Correlator (KJJVC), to be used for Korean VLBI Network (KVN) in Korea Astronomy & Space Science Institute (KASI), is a high-speed calculator that outputs the correlation results in the maximum speed of 1.4GB/sec.To receive and record this data keeping up with this speed and with no loss, the design of the software running on the data archive system for receving and recording the output data from the correlator is very important. But, the simple kind of programming using just single thread that receives data from network and records it by turns, can cause a bottleneck effect while processing high speed data and a probable data loss, and cannot utilize the merit of hardwares supporting multi core or hyper threading, or operating systems supporting these hardwares. In this talk we summarize the design of the data transfer software for KJJVC and high speed, large capacity data archive system using general socket programming and multi threading techniques, and the pre-BMT(Bench Marking Test) results from the tests of the storage product providers' proposals using this software.

  • PDF

The Study of Sensor Network for Information Retrieval and Communication Protocol High Performance Algorithm (센서 네트워크의 정보검색 및 통신프로토콜 성능향상 알고리즘에 관한 연구)

  • Kang, Jeong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.816-823
    • /
    • 2010
  • Recently research efforts for ubiquitous technology that includes RFID(Radio Frequency Deification and sensor networks are conducted very actively The architectural framework of the USN sensor network discovery service. The survey of the USN technology is conducted on four technological visions that contain USN system technology USN networking technology and USN middleware along with the service platform, With respect to each technological division domestic and worldwide leading research projects are primarily explored with their technical features and research projects are primarily explored with their technical features and research outputs. Boasted on the result of the survey we establish a USN software model that includes data sensing, sensor data storage sensor data storage sensor data naming and sensor feed name service. This main objective of this model is to provide a reference model for the facilitation of USN application developments.

A study on the relationship between the thermal properties of rock and the enviroment in underground spaces (암반 열물성과 지하공간 환경분석 연구)

  • Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.335-341
    • /
    • 1996
  • This fundamental study analyzes the relationship between rock thermal properties and psychrometric properties in underground space and has a ultimate goal to develope technologies for predicting major environmental variables. The study is divided into 2 subjects (1) developement of a basic model for predicting temperature and humidity, (2) analysis of the validity of the model through application to a local underground storage space for military supplies. The basic model is built for the network of tunnel-shaped underground spaces. The model takes into account rock thermal properties and changes in moisture content in the air due to condensation/evaporation on the rock surface. Using lumped-parameter analytical method, heat flux from or to the surrounding rock is calculated and then the psychrometric properties(air quantity, pressure, temperature, humidity) are estimated through network simulation. The model can be utilized regardless of the tunnel type. The study site is a local storage space built in rock, mainly granite gneiss and quartz-porphyry. It is a U-shaped tunnel, 593.5m long and 6x6.5m wide. Relative humidity inside has to be strictly controlled under 55% to avoid erosion of a certain types of supplies stored in 6 chambers with the capacity of 300~1.000 ton. The thermal conductivity varies between 2.734 and 2.779W/m$^{\circ}C$ and the thermal diffusivity is in the range of 1.119 and $1.152{\times}10^{-6}\;m^2/s$ the specific heat between 910 and $920\;J/kg^{\circ}C$. Relative errors of the predicted values of dry/wet temperature and relative humidity are 0.8~3.0%, 0~7.5% and 0~7.0%, respectively. Apparent errors associated with the rock surface temperature seems to be partly due to the intrinsic limitations in the infrared thermometer used in this study.

  • PDF

A Study on Storing Node Addition and Instance Leveling Using DIS Message in RPL (RPL에서 DIS 메시지를 이용한 Storing 노드 추가 및 Instance 평준화 기법 연구)

  • Bae, Sung-Hyun;Yun, Jeong-Oh
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.590-598
    • /
    • 2018
  • Recently, interest in IoT(Internet of Things) technology, which provides Internet services to objects, is increasing. IoT offers a variety of services in home networks, healthcare, and disaster alerts. IoT with LLN(Low Power & Lossy Networks) feature frequently loses sensor node. RPL, the standard routing protocol of IoT, performs global repair when data loss occurs in a sensor node. However, frequent loss of sensor nodes due to lower sensor nodes causes network performance degradation due to frequent full path reset. In this paper, we propose an additional selection method of the storage mode sensor node to solve the network degradation problem due to the frequent path resetting problem even after selecting the storage mode sensor node, and propose a method of equalizing the total path resetting number of each instance.

Directory Cache Coherence Scheme using the Number-Balanced Binary Tree (수 평형 이진트리를 이용한 디렉토리 캐쉬 일관성 유지 기법)

  • Seo, Dae-Wha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.821-830
    • /
    • 1997
  • The directory-based cache coherence scheme is an attractive approach to solve the caceh coherence problem in a large-scale shared-memory multiprocessor.However, the exsting directory-based schemes have some problens such as the enormous storage overhead for a directory, the long invalidation latency, the heavy network condes-tion, and the low scalability.For resolving these problems, we propose a new directroy- based caceh coherence scheme which is suitable for building scalable, shred-memory multiprocessors.In this scheme, each directory en-try ofr a given memory block is a number-balanced binaty tree(NBBT) stucture.The NBBT has several proper-ties to effciently maintain the directory for the cache consistency such that the shape is unique, the maximum depth is [log$_2$n], and the tree has the minimum number of leaf nodes among the binarry tree with n nodes.Therefore, this scheme can reduce the storage overhead, the network traffic, and the inbalidation latency and can ensutr the high- scalability the large-scale shared-memory multiprocessors.

  • PDF

A Comparison Study on Data Caching Policies of CCN (콘텐츠 중심 네트워킹의 데이터 캐시 정책 비교 연구)

  • Kim, Dae-Youb
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.327-334
    • /
    • 2017
  • For enhancing network efficiency, various applications/services like CDN and P2P try to utilize content which have previously been cached somewhere. Content-centric networking (CCN) also utilizes data caching functionality. However, dislike CDN/P2P, CCN implements such a function on network nodes. Then, any intermediated nodes can directly respond to request messages for cached data. Hence, it is essential which content is cached as well as which nodes cache transmitted content. Basically, CCN propose for every nodes on the path from the content publisher of transmitted object to a requester to cache the object. However, such an approach is inefficient considering the utilization of cached objects as well as the storage overhead of each node. Hence, various caching mechanisms are proposed to enhance the storage efficiency of a node. In this paper, we analyze the performance of such mechanisms and compare the characteristics of such mechanisms. Also, we analyze content utilization patterns and apply such pattern to caching mechanisms to analyze the practicalism of the caching mechanisms.

Pub/Sub-based Sensor virtualization framework for Cloud environment

  • Ullah, Mohammad Hasmat;Park, Sung-Soon;Nob, Jaechun;Kim, Gyeong Hun
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.109-119
    • /
    • 2015
  • The interaction between wireless sensors such as Internet of Things (IoT) and Cloud is a new paradigm of communication virtualization to overcome resource and efficiency restriction. Cloud computing provides unlimited platform, resources, services and also covers almost every area of computing. On the other hand, Wireless Sensor Networks (WSN) has gained attention for their potential supports and attractive solutions such as IoT, environment monitoring, healthcare, military, critical infrastructure monitoring, home and industrial automation, transportation, business, etc. Besides, our virtual groups and social networks are in main role of information sharing. However, this sensor network lacks resource, storage capacity and computational power along with extensibility, fault-tolerance, reliability and openness. These data are not available to community groups or cloud environment for general purpose research or utilization yet. If we reduce the gap between real and virtual world by adding this WSN driven data to cloud environment and virtual communities, then it can gain a remarkable attention from all over, along with giving us the benefit in various sectors. We have proposed a Pub/Sub-based sensor virtualization framework Cloud environment. This integration provides resource, service, and storage with sensor driven data to the community. We have virtualized physical sensors as virtual sensors on cloud computing, while this middleware and virtual sensors are provisioned automatically to end users whenever they required. Our architecture provides service to end users without being concerned about its implementation details. Furthermore, we have proposed an efficient content-based event matching algorithm to analyze subscriptions and to publish proper contents in a cost-effective manner. We have evaluated our algorithm which shows better performance while comparing to that of previously proposed algorithms.

Security and Privacy Mechanism using TCG/TPM to various WSN (다양한 무선네트워크 하에서 TCG/TPM을 이용한 정보보호 및 프라이버시 매커니즘)

  • Lee, Ki-Man;Cho, Nae-Hyun;Kwon, Hwan-Woo;Seo, Chang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.195-202
    • /
    • 2008
  • In this paper, To improve the effectiveness of security enforcement, the first contribution in this work is that we present a clustered heterogeneous WSN(Wareless Sensor Network) architecture, composed of not only resource constrained sensor nodes, but also a number of more powerful high-end devices acting as cluster heads. Compared to sensor nodes, a high-end cluster head has higher computation capability, larger storage, longer power supply, and longer radio transmission range, and it thus does not suffer from the resource scarceness problem as much as a sensor node does. A distinct feature of our heterogeneous architecture is that cluster heads are equipped with TC(trusted computing) technology, and in particular a TCG(Trusted Computing Group) compliant TPM (Trusted Platform Module) is embedded into each cluster head. According the TCG specifications, TPM is a tamper-resistant, self-contained secure coprocessor, capable of performing cryptographic functions. A TPM attached to a host establishes a trusted computing platform that provides sealed storage, and measures and reports the integrity state of the platform.

  • PDF