• Title/Summary/Keyword: network society

Search Result 26,841, Processing Time 0.056 seconds

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea (한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가)

  • Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.235-250
    • /
    • 2021
  • The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.

A study on the effect of startup entrepreneurs' experience of industry-university cooperation through incubator organizations on organizational learning capability and innovation performance (벤처기업 창업가의 배태조직과 산학협력 경험이 조직학습역량과 혁신성과에 미치는 영향)

  • Kim, Deokyong;Bae, Sung Joo
    • Journal of Technology Innovation
    • /
    • v.30 no.2
    • /
    • pp.29-58
    • /
    • 2022
  • Startups lack resources and manpower to build internal capabilities to strengthen market competitiveness; external cooperation such as joint research and networking plays is important. In this study, we analyzed the effect of startups' industry-university cooperation on organizational learning capability and innovation performance. Empirical results demonstrate the mechanism by which government R&D investment strengthens organizational learning capability and creates innovative results by promoting cooperation between startups and universities. First, industry-university cooperation strengthened organizational learning capability. An empirical analysis shows that startups increase internal capabilities through external cooperation. Second, startups' organizational learning capability had a significant effect on innovation performance. We analyze how organizations with high learning capabilities positively develop corporate innovation performance by having a culture of discovery and sharing new ideas. Finally, industry-university cooperation had different effects on organizational learning capability and innovation performance according to the previous experiences of startup founders. In particular, small- and medium-sized (startup) businesses and individual-based experience groups positively affected the creation of organizational learning capabilities and innovation performance through industry-university cooperation. Small- and medium-sized businesses and individual founders have a relatively small cooperative network with the outside world compared to founders of large companies, universities, and research institutes; therefore, they strengthen organizational learning capabilities through cooperation with universities. This study demonstrates that government should create policy inducements for cooperation with universities to maximize the R&D performance of startups. Criticism exists that lending support to startups and universities will hinder innovation performance; nevertheless, government investment plays a role in expanding intangible resources such as accumulating technologies, fostering high-quality human resources, and strengthening innovation networks. Therefore, the government should appropriately utilize the its authority to strengthen investment strategies for startup growth.

Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge (연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.49-71
    • /
    • 2021
  • Users who intend to utilize knowledge to actively solve given problems proceed their jobs with cross- and sequential exploration of associated knowledge related each other in terms of certain criteria, such as content relevance. A knowledge map is the diagram or taxonomy overviewing status of currently managed knowledge in a knowledge-base, and supports users' knowledge exploration based on certain relationships between knowledge. A knowledge map, therefore, must be expressed in a networked form by linking related knowledge based on certain types of relationships, and should be implemented by deploying proper technologies or tools specialized in defining and inferring them. To meet this end, this study suggests a methodology for developing the knowledge graph-based knowledge map using the Graph DB known to exhibit proper functionality in expressing and inferring relationships between entities and their relationships stored in a knowledge-base. Procedures of the proposed methodology are modeling graph data, creating nodes, properties, relationships, and composing knowledge networks by combining identified links between knowledge. Among various Graph DBs, the Neo4j is used in this study for its high credibility and applicability through wide and various application cases. To examine the validity of the proposed methodology, a knowledge graph-based knowledge map is implemented deploying the Graph DB, and a performance comparison test is performed, by applying previous research's data to check whether this study's knowledge map can yield the same level of performance as the previous one did. Previous research's case is concerned with building a process-based knowledge map using the ontology technology, which identifies links between related knowledge based on the sequences of tasks producing or being activated by knowledge. In other words, since a task not only is activated by knowledge as an input but also produces knowledge as an output, input and output knowledge are linked as a flow by the task. Also since a business process is composed of affiliated tasks to fulfill the purpose of the process, the knowledge networks within a business process can be concluded by the sequences of the tasks composing the process. Therefore, using the Neo4j, considered process, task, and knowledge as well as the relationships among them are defined as nodes and relationships so that knowledge links can be identified based on the sequences of tasks. The resultant knowledge network by aggregating identified knowledge links is the knowledge map equipping functionality as a knowledge graph, and therefore its performance needs to be tested whether it meets the level of previous research's validation results. The performance test examines two aspects, the correctness of knowledge links and the possibility of inferring new types of knowledge: the former is examined using 7 questions, and the latter is checked by extracting two new-typed knowledge. As a result, the knowledge map constructed through the proposed methodology has showed the same level of performance as the previous one, and processed knowledge definition as well as knowledge relationship inference in a more efficient manner. Furthermore, comparing to the previous research's ontology-based approach, this study's Graph DB-based approach has also showed more beneficial functionality in intensively managing only the knowledge of interest, dynamically defining knowledge and relationships by reflecting various meanings from situations to purposes, agilely inferring knowledge and relationships through Cypher-based query, and easily creating a new relationship by aggregating existing ones, etc. This study's artifacts can be applied to implement the user-friendly function of knowledge exploration reflecting user's cognitive process toward associated knowledge, and can further underpin the development of an intelligent knowledge-base expanding autonomously through the discovery of new knowledge and their relationships by inference. This study, moreover than these, has an instant effect on implementing the networked knowledge map essential to satisfying contemporary users eagerly excavating the way to find proper knowledge to use.

A Study of the Effect of the KTX Mulgeum Station Stop on Railroad Users in Yangsan City (KTX 물금역 정차 확정이 양산시 철도 이용자에게 미치는 영향에 관한 연구)

  • Choi, Yang-Won;Jang, Jae-Suck;Suh, Jeong-Yeal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.527-536
    • /
    • 2022
  • The purpose of this study is to predict changing traffic environments and related economic effects by reflecting the changed KTDB and socio-economic indicators pertaining to Mulgeum station, a general railway stop, when it is confirmed as a KTX stop. To analyze the data of this study, socioeconomic indicators and the general status of transportation facility operations were investigated with reference to related statistical data, centered on the country overall and on Yangsan city in particular. In addition, we investigated and referenced the railroad facility construction plan and train operation plan, which are national high-level plans related to land development and transportation network construction. Currently, there are only ITX trains (4 times/day) and Mugunghwa trains (29 times/day) that stop at Mulgeum station in Yangsan, meaning that passengers cannot use KTX trains in the Yangsan area. In particular, the need for a KTX stop at Mulgeum station has been continuously raised because train users in the Yangsan area have inconvenient transportation in that they must travel 40 minutes to Ulsan station or 30 minutes to Gupo station to use the KTX. As a result of analyzing railroad transportation demand that will change in the future as the KTX stop at Mulgeum station is confirmed, the number of passengers boarding and arriving at Mulgeum station is predicted to be 1,674 passengers/day by 2025. In addition, the numbers of train passengers that are converted from Ulsan and Gupo stations due to the stop at Mulgeum station are predicted to be 594 passengers/day boarding and 562 passengers/day arriving by 2025. In the future, if Yangsan citizens use the KTX Mulgeum station, the access time to Mulgeum station can be shortened to 22 minutes from 65 minutes, and it is predicted that the inconvenience of transferring between railroads will be resolved, with the waiting time for transfers reduced by up to a maximum of 40 minutes. Therefore, the economic effect of creating a KTX stop at Mulgeum station was analyzed to be B/C=1.823 when general railroad operating costs are not taken into account and B/C=2.127 when general railroad operating costs are considered. In conclusion, when using KTX trains to visit the Seoul Metropolitan Area, it takes 2 hours and 43 minutes to use Mulgeum station without using Ulsan station or Gupo station, which is considered to be very effective for reducing travel times and improving the economic feasibility of this development; it is also expected that Yangsan city will be able to improve accessibility and mobility to the Seoul Metropolitan Area by breaking free from the disgrace of being a remote location given its link to KTX in the future.

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

Popularization of Marathon through Social Network Big Data Analysis : Focusing on JTBC Marathon (소셜 네트워크 빅데이터 분석을 통한 마라톤 대중화 : JTBC 마라톤대회를 중심으로)

  • Lee, Ji-Su;Kim, Chi-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.27-40
    • /
    • 2020
  • The marathon has long been established as a representative lifestyle for all ages. With the recent expansion of the Work and Life Balance trend across the society, marathon with a relatively low barrier to entry is gaining popularity among young people in their 20s and 30s. By analyzing the issues and related words of the marathon event, we will analyze the spottainment elements of the marathon event that is popular among young people through keywords, and suggest a development plan for the differentiated event. In order to analyze keywords and related words, blogs, cafes and news provided by Naver and Daum were selected as analysis channels, and 'JTBC Marathon' and 'Culture' were extracted as key words for data search. The data analysis period was limited to a three-month period from August 13, 2019 to November 13, 2019, when the application for participation in the 2019 JTBC Marathon was started. For data collection and analysis, frequency and matrix data were extracted through social matrix program Textom. In addition, the degree of the relationship was quantified by analyzing the connection structure and the centrality of the degree of connection between the words. Although the marathon is a personal movement, young people share a common denominator of "running" and form a new cultural group called "running crew" with other young people. Through this, it was found that a marathon competition culture was formed as a festival venue where people could train together, participate together, and escape from the image of a marathon run alone and fight with themselves.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis (차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구)

  • Hae Jin Park;Jae Suk Choi;Sang Goo Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.121-142
    • /
    • 2023
  • As the number and weight of imported food are steadily increasing, safety management of imported food to prevent food safety accidents is becoming more important. The Ministry of Food and Drug Safety conducts on-site inspections of foreign food facilities before customs clearance as well as import inspection at the customs clearance stage. However, a data-based safety management plan for imported food is needed due to time, cost, and limited resources. In this study, we tried to increase the efficiency of the on-site inspection by preparing a machine learning prediction model that pre-selects the companies that are expected to fail before the on-site inspection. Basic information of 303,272 foreign food facilities and processing businesses collected in the Integrated Food Safety Information Network and 1,689 cases of on-site inspection information data collected from 2019 to April 2022 were collected. After preprocessing the data of foreign food facilities, only the data subject to on-site inspection were extracted using the foreign food facility_code. As a result, it consisted of a total of 1,689 data and 103 variables. For 103 variables, variables that were '0' were removed based on the Theil-U index, and after reducing by applying Multiple Correspondence Analysis, 49 characteristic variables were finally derived. We build eight different models and perform hyperparameter tuning through 5-fold cross validation. Then, the performance of the generated models are evaluated. The research purpose of selecting companies subject to on-site inspection is to maximize the recall, which is the probability of judging nonconforming companies as nonconforming. As a result of applying various algorithms of machine learning, the Random Forest model with the highest Recall_macro, AUROC, Average PR, F1-score, and Balanced Accuracy was evaluated as the best model. Finally, we apply Kernal SHAP (SHapley Additive exPlanations) to present the selection reason for nonconforming facilities of individual instances, and discuss applicability to the on-site inspection facility selection system. Based on the results of this study, it is expected that it will contribute to the efficient operation of limited resources such as manpower and budget by establishing an imported food management system through a data-based scientific risk management model.

Deep Learning Approaches for Accurate Weed Area Assessment in Maize Fields (딥러닝 기반 옥수수 포장의 잡초 면적 평가)

  • Hyeok-jin Bak;Dongwon Kwon;Wan-Gyu Sang;Ho-young Ban;Sungyul Chang;Jae-Kyeong Baek;Yun-Ho Lee;Woo-jin Im;Myung-chul Seo;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Weeds are one of the factors that reduce crop yield through nutrient and photosynthetic competition. Quantification of weed density are an important part of making accurate decisions for precision weeding. In this study, we tried to quantify the density of weeds in images of maize fields taken by unmanned aerial vehicle (UAV). UAV image data collection took place in maize fields from May 17 to June 4, 2021, when maize was in its early growth stage. UAV images were labeled with pixels from maize and those without and the cropped to be used as the input data of the semantic segmentation network for the maize detection model. We trained a model to separate maize from background using the deep learning segmentation networks DeepLabV3+, U-Net, Linknet, and FPN. All four models showed pixel accuracy of 0.97, and the mIOU score was 0.76 and 0.74 in DeepLabV3+ and U-Net, higher than 0.69 for Linknet and FPN. Weed density was calculated as the difference between the green area classified as ExGR (Excess green-Excess red) and the maize area predicted by the model. Each image evaluated for weed density was recombined to quantify and visualize the distribution and density of weeds in a wide range of maize fields. We propose a method to quantify weed density for accurate weeding by effectively separating weeds, maize, and background from UAV images of maize fields.

An Analysis of the Trends in Academic Research on Invention Gifted Education (발명영재교육에 관한 학술연구 동향 분석)

  • Lee Minhye;Hillenblink Maximilian Ludwig
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.3 no.1
    • /
    • pp.1-28
    • /
    • 2023
  • This study was conducted to examine the quantitative trend of domestic studies in invention gifted education, identify the intrinsic meaning and connection attributes in these research analysis, and provide basic data to explore future development plans. To this end, 97 domestic academic papers were finally selected as "Invention Gifted Education" by the Korea Research and Information Service (RISS), technical statistical analysis was conducted with SPSS on publication year, author composition, researcher's affiliation and location area, and published journal. The trend, which had been on the rise since 2007, confirmed by academic papers on gifted education in invention, peaked at the time of the 3rd comprehensive plan for gifted education and has since declined again. As a result of technical statistical analysis of the author's characteristics, half of the papers were jointly published, followed by a number of independent authors. The papers published alone were identified as belonging to universities, research institutes, elementary schools, and middle schools, and the cooperative papers were many studies cooperated with young researchers and professional researchers, and only one collaborative study was conducted between young researchers. When looking at the regions and journals in which the Invention Gifted Education thesis was published, it was concentrated in some regions or journals, and the deviation was very large. As a result of language network analysis using academic paper keywords, creativity and programs were identified as meaningful keywords that showed top appearance, and the keyword pair with high co-appearance was invention gifted-creativity. The keyword of connection-centeredness at the top served as an intermediary for creativity, problem-solving, development, and company to expand to other research topics, and served as a research topic that could be expanded to various topics. In the case of mediation-centeredness, creativity, programs, and effects showed high mediation-centeredness, indicating that it is an important keyword that plays a role in mediating or mediating other keywords. Through these research results, national policy measures need to be prepared for the development of gifted education, and the need to create an invention ecological culture that can enhance teachers' expertise while increasing social responsibility for gifted education.