• Title/Summary/Keyword: network selection

Search Result 1,771, Processing Time 0.028 seconds

Mobility Scenarios into Future Wireless Access Network

  • Gilani, Syed Mushhad Mustuzhar;Hong, Tang;Cai, Qiqi;Zhao, Guofeng
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.236-255
    • /
    • 2017
  • The rapid growth of smart devices demands an enhanced throughput for network connection sustainability during mobility. However, traditional wireless network architecture suffers from mobility management issues. In order to resolve the traditional mobility management issues, we propose a novel architecture for future wireless access network based on software-defined network (SDN) by using the advantage of network function virtualization (NFV). In this paper, network selection approach (NSA) has been introduced for mobility management that comprises of acquiring the information of the underlying networking devices through the OpenFlow controller, percepts the current network behavior and later the selection of an appropriate action or network. Furthermore, mobility-related scenarios and use cases to analyze the implementation aspects of the proposed architecture are provided. The simulation results confirm that the proposed scenarios have obtained a seamless mobility with enhanced throughput at minimum packet loss as compared to the existing IEEE 802.11 wireless network.

Effective Feature Selection Model for Network Data Modeling (네트워크 데이터 모델링을 위한 효과적인 성분 선택)

  • Kim, Ho-In;Cho, Jae-Ik;Lee, In-Yong;Moon, Jong-Sub
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.92-98
    • /
    • 2008
  • Network data modeling is a essential research for the evaluation for intrusion detection systems performance, network modeling and methods for analyzing network data. In network data modeling, real data from the network must be analyzed and the modeled data must be efficiently composed to reflect a sufficient amount of the original data. In this parer the useful elements of real network data were quantified from packets captured from a huge network. Futhermore, a statistical analysis method was used to find the most effective element for efficiently classifying the modeled data.

A Network-based Optimization Model for Effective Target Selection (핵심 노드 선정을 위한 네트워크 기반 최적화 모델)

  • Jinho Lee;Kihyun Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.53-62
    • /
    • 2023
  • Effects-Based Operations (EBO) refers to a process for achieving strategic goals by focusing on effects rather than attrition-based destruction. For a successful implementation of EBO, identifying key nodes in an adversary network is crucial in the process of EBO. In this study, we suggest a network-based approach that combines network centrality and optimization to select the most influential nodes. First, we analyze the adversary's network structure to identify the node influence using degree and betweenness centrality. Degree centrality refers to the extent of direct links of a node to other nodes, and betweenness centrality refers to the extent to which a node lies between the paths connecting other nodes of a network together. Based on the centrality results, we then suggest an optimization model in which we minimize the sum of the main effects of the adversary by identifying the most influential nodes under the dynamic nature of the adversary network structure. Our results show that key node identification based on our optimization model outperforms simple centrality-based node identification in terms of decreasing the entire network value. We expect that these results can provide insight not only to military field for selecting key targets, but also to other multidisciplinary areas in identifying key nodes when they are interacting to each other in a network.

An Intention-Response Model based on Mirror Neuron and Theory of Mind using Modular Behavior Selection Networks (모듈형 행동선택네트워크를 이용한 거울뉴런과 마음이론 기반의 의도대응 모델)

  • Chae, Yu-Jung;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.320-327
    • /
    • 2015
  • Although service robots in various fields are being commercialized, most of them have problems that depend on explicit commands by users and have difficulty to generate robust reactions of the robot in the unstable condition using insufficient sensor data. To solve these problems, we modeled mirror neuron and theory of mind systems, and applied them to a robot agent to show the usefulness. In order to implement quick and intuitive response of the mirror neuron, the proposed intention-response model utilized behavior selection networks considering external stimuli and a goal, and in order to perform reactions based on the long-term action plan of theory of mind system, we planned behaviors of the sub-goal unit using a hierarchical task network planning, and controled behavior selection network modules. Experiments with various scenarios revealed that appropriate reactions were generated according to external stimuli.

Anomaly behavior detection using Negative Selection algorithm based anomaly detector (Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지)

  • 김미선;서재현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.391-394
    • /
    • 2004
  • Change of paradigm of network attack technique was begun by fast extension of the latest Internet and new attack form is appearing. But, Most intrusion detection systems detect informed attack type because is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, visibilitys to apply human immunity mechanism are appearing. In this paper, we create self-file from normal behavior profile about network packet and embody self recognition algorithm to use self-nonself discrimination in the human immune system to detect anomaly behavior. Sense change because monitors self-file creating anomaly detector based on Negative Selection Algorithm that is self recognition algorithm's one and detects anomaly behavior. And we achieve simulation to use DARPA Network Dataset and verify effectiveness of algorithm through the anomaly detection rate.

  • PDF

An Action Selection Mechanism and Learning Algorithm for Intelligent Robot (지능로봇을 위한 행동선택 및 학습구조)

  • Yoon, Young-Min;Lee, Sang-Hoon;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.496-498
    • /
    • 2004
  • An action-selection-mechanism is proposed to deal with sequential behaviors, where associations between some of stimulus and behaviors will be learned by a shortest-path-finding-based reinforcement team ins technique. To be specific, we define behavioral motivation as a primitive node for action selection, and then sequentially construct a network with behavioral motivations. The vertical path of the network represents a behavioral sequence. Here, such a tree fur our proposed ASM can be newly generated and/or updated. whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, some experimental results on a "pushing-box-into-a-goal task" of a mobile robot will be illustrated.

  • PDF

Review on Genetic Algorithms for Pattern Recognition (패턴 인식을 위한 유전 알고리즘의 개관)

  • Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • In pattern recognition field, there are many optimization problems having exponential search spaces. To solve of sequential search algorithms seeking sub-optimal solutions have been used. The algorithms have limitations of stopping at local optimums. Recently lots of researches attempt to solve the problems using genetic algorithms. This paper explains the huge search spaces of typical problems such as feature selection, classifier ensemble selection, neural network pruning, and clustering, and it reviews the genetic algorithms for solving them. Additionally we present several subjects worthy of noting as future researches.

Stepwise Decision making Methodology Based on Artificial Intelligence: An Application to Bearing Design (인공지능에 기반한 단계적 의사결정방법 : 베어링 설계에의 적용)

  • 서태설;한순홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • The bearing design includes the steps of selection bering type, selection bearing subtype, and determining the peripheral equipments. In this paper decision making methodologies are compared to propose a stepwise decision methodology to the bearing selection problem. An artificial neural network trained with design cases is used for selecting a bearing type in the first step. Then the subtype of the bearing is selected using the weighting method, high is a kind of multi-criteria decision making method. Finally, the types of peripheral equipments such as lubrication devices, seals and bearing housings are determined using a rule-based expert system.

  • PDF

Performance Analysis of Adaptive Link-Selection Scheme considering Buffer and Channel State Information (버퍼와 채널 상태를 고려한 적응형 링크선택 방안의 성능 분석)

  • Kim, Hyujun;Chung, Young-uk
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.402-407
    • /
    • 2018
  • Link selection strategy has been an important technical issues of relay network. In this paper, we introduce a link selection scheme in the bidirectional, buffer-aided relay network. Three kinds of information such as the states of the queue at the relay buffer, the qualities of the links, and the states of the queues at the user buffer are considered. Throughput and delay performance is evaluated under three cases with different available information.

Data-Driven-Based Beam Selection for Hybrid Beamforming in Ultra-Dense Networks

  • Ju, Sang-Lim;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • In this paper, we propose a data-driven-based beam selection scheme for massive multiple-input and multiple-output (MIMO) systems in ultra-dense networks (UDN), which is capable of addressing the problem of high computational cost of conventional coordinated beamforming approaches. We consider highly dense small-cell scenarios with more small cells than mobile stations, in the millimetre-wave band. The analog beam selection for hybrid beamforming is a key issue in realizing millimetre-wave UDN MIMO systems. To reduce the computation complexity for the analog beam selection, in this paper, two deep neural network models are used. The channel samples, channel gains, and radio frequency beamforming vectors between the access points and mobile stations are collected at the central/cloud unit that is connected to all the small-cell access points, and are used to train the networks. The proposed machine-learning-based scheme provides an approach for the effective implementation of massive MIMO system in UDN environment.