• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.026 seconds

Application of Parallel PSO Algorithm based on PC Cluster System for Solving Optimal Power Flow Problem (PC 클러스터 시스템 기반 병렬 PSO 알고리즘의 최적조류계산 적용)

  • Kim, Jong-Yul;Moon, Kyoung-Jun;Lee, Haw-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1699-1708
    • /
    • 2007
  • The optimal power flow(OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, the OPF problem has been intensively studied and widely used in power system operation and planning. In these days, OPF is becoming more and more important in the deregulation environment of power pool and there is an urgent need of faster solution technique for on-line application. To solve OPF problem, many heuristic optimization methods have been developed, such as Genetic Algorithm(GA), Evolutionary Programming(EP), Evolution Strategies(ES), and Particle Swarm Optimization(PSO). Especially, PSO algorithm is a newly proposed population based heuristic optimization algorithm which was inspired by the social behaviors of animals. However, population based heuristic optimization methods require higher computing time to find optimal point. This shortcoming is overcome by a straightforward parallel processing of PSO algorithm. The developed parallel PSO algorithm is implemented on a PC cluster system with 6 Intel Pentium IV 2GHz processors. The proposed approach has been tested on the IEEE 30-bus system. The results showed that computing time of parallelized PSO algorithm can be reduced by parallel processing without losing the quality of solution.

Symbiotic organisms search algorithm based solution to optimize both real power loss and voltage stability limit of an electrical energy system

  • Pagidi, Balachennaiah;Munagala, Suryakalavathi;Palukuru, Nagendra
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.255-274
    • /
    • 2016
  • This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Performance Comparison of Route Optimization Handover Methods in Proxy Mobile IPv6 Network (Proxy Mobile IPv6 네트워크에서 경로 최적화 핸드오버 기법들의 성능 비교)

  • Jang, Ji-Won;Jeon, Se-Il;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.59-66
    • /
    • 2010
  • In this paper, we compare the performance of proposals for route optimization handover, which provides optimized communication to mobile node, presented in IETF (Internet Engineering Task Force). For comparison, we consider the architecture with two MAGs (Mobile Access Gateways) and single LMA (Local Mobility Anchor), and analyze the signaling cost, handover latency, and packet loss. Evaluation results show that they are changed depending on the involved component, the number of route optimization messages and performance factor that each proposal targets.

An Improved Mean-Variance Optimization for Nonconvex Economic Dispatch Problems

  • Kim, Min Jeong;Song, Hyoung-Yong;Park, Jong-Bae;Roh, Jae-Hyung;Lee, Sang Un;Son, Sung-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.80-89
    • /
    • 2013
  • This paper presents an efficient approach for solving economic dispatch (ED) problems with nonconvex cost functions using a 'Mean-Variance Optimization (MVO)' algorithm with Kuhn-Tucker condition and swap process. The aim of the ED problem, one of the most important activities in power system operation and planning, is to determine the optimal combination of power outputs of all generating units so as to meet the required load demand at minimum operating cost while satisfying system equality and inequality constraints. This paper applies Kuhn-Tucker condition and swap process to a MVO algorithm to improve a global minimum searching capability. The proposed MVO is applied to three different nonconvex ED problems with valve-point effects, prohibited operating zones, transmission network losses, and multi-fuels with valve-point effects. Additionally, it is applied to the large-scale power system of Korea. The results are compared with those of the state-of-the-art methods as well.

Service Composition Based on Niching Particle Swarm Optimization in Service Overlay Networks

  • Liao, Jianxin;Liu, Yang;Wang, Jingyu;Zhu, Xiaomin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1106-1127
    • /
    • 2012
  • Service oriented architecture (SOA) lends itself to model the application components to coarse-grained services in such a way that the composition of different services could be feasible. Service composition fulfills numerous service requirements by constructing composite applications with various services. As it is the case in many real-world applications, different users have diverse QoS demands issuing for composite applications. In this paper, we present a service composition framework for a typical service overlay network (SON) considering both multiple QoS constraints and load balancing factors. Moreover, a service selection algorithm based on niching technique and particle swarm optimization (PSO) is proposed for the service composition problem. It supports optimization problems with multiple constraints and objective functions, whether linear or nonlinear. Simulation results show that the proposed algorithm results in an acceptable level of efficiency regarding the service composition objective under different circumstances.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화: 진화론적 방법)

  • Kim Dong-Won;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화 : 진화론적 방법)

  • Kim, Dong Won;Park, Gwi Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Multi-objective Optimization Model for C-UAS Sensor Placement in Air Base (공군기지의 C-UAS 센서 배치를 위한 다목적 최적화 모델)

  • Shin, Minchul;Choi, Seonjoo;Park, Jongho;Oh, Sangyoon;Jeong, Chanki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Recently, there are an increased the number of reports on the misuse or malicious use of an UAS. Thus, many researchers are studying on defense schemes for UAS by developing or improving C-UAS sensor technology. However, the wrong placement of sensors may lead to a defense failure since the proper placement of sensors is critical for UAS defense. In this study, a multi-object optimization model for C-UAS sensor placement in an air base is proposed. To address the issue, we define two objective functions: the intersection ratio of interested area and the minimum detection range and try to find the optimized placement of sensors that maximizes the two functions. C-UAS placement model is designed using a NSGA-II algorithm, and through experiments and analyses the possibility of its optimization is verified.