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Abstract 
 

Service oriented architecture (SOA) lends itself to model the application components to 

coarse-grained services in such a way that the composition of different services could be 

feasible. Service composition fulfills numerous service requirements by constructing 

composite applications with various services. As it is the case in many real-world applications, 

different users have diverse QoS demands issuing for composite applications. In this paper, we 

present a service composition framework for a typical service overlay network (SON) 

considering both multiple QoS constraints and load balancing factors. Moreover, a service 

selection algorithm based on niching technique and particle swarm optimization (PSO) is 

proposed for the service composition problem. It supports optimization problems with 

multiple constraints and objective functions, whether linear or nonlinear. Simulation results 

show that the proposed algorithm results in an acceptable level of efficiency regarding the 

service composition objective under different circumstances. 
 

 

Keywords: Service composition, SON, particle swarm optimization, niching technique, 

multi-constraint optimal service composition path 
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1. Introduction 

With the development of advanced computing and communication technologies, users are 

pursuing various QoS-aware applications aiming for their numerous diverse demands. 

However, the conventional client-server mechanism, which is inefficient, unreliable and 

inflexible, is inadequate to fulfill nowadays users' personalized requirements. These 

challenges motivate the emergence of service oriented architecture (SOA), in which 

application components are modulated to coarse-grained services to achieve reusability and 

adaptability. The service provision in SOA is classified into two categories: single-service 

application and multi-service application. For a single-service application, the system searches 

for all services qualified for the functional demands and select the optimal one for execution. 

For a multi-service application, the system invokes several services in a specific order and 

constructs a composite application for execution, which is defined as service composition. 

Service composition can be divided into three steps in process: 1) submission of composite 

request; 2) service selection; 3) service execution and result acquirement. In the first step, the 

user submits the functional descriptions like the target of the composite application and the 

non-functional specification like the QoS constraints of the composite application. The 

composite application can be modeled as a workflow or a directed attribute graph (DAG). In 

the second step, the system selects the optimal services based on the QoS constraints, e.g., 

delay, cost, reliability. Then the system invokes these services and returns the result to the user 

in the last step, which is out of our concern. 

To the best of our knowledge, most existing solutions only discuss specific service 

composition issues, and ignore the users' requirements and load balance. Therefore, we focus 

on a more general service composition model considering not only multiple QoS constraints 

but also load balance factors. To solve this problem, we propose a service selection algorithm 

Niching PSO which can support multi-constraint multi-objective problems, whether linear or 

nonlinear. The simulation results show that the service selection algorithm is efficient and 

effective for service composition. 

The rest of this paper is organized as follows. Section 2 presents the system model and 

problem formulation. The proposed algorithm is described in Section 3. Section 4 presents the 

simulation results, and analyzes the performance of the proposed algorithm. Section 5 presents 

the related work. Finally, Section 6 concludes this paper. 

2. System Model and Problem Formulation 

In this section, we first introduce our system environment. Then we present our system 

architecture. At the end of this section, we formally define our service selection problem 

regard to QoS constraints and load balance factors. 

2.1 System Environment 

In a service overlay network (SON) [24], service nodes (SNs) provide a large number of 

services for various functions. Duplicated services may be provided by diverse service nodes. 

Service nodes are attached to different physical nodes, e.g., servers, laptops, mobile phones etc. 

Service nodes intercommunicate with each other via overlay links. An overlay link consists of 

one or more physical connections on the lower layer. The services are registered in the service 

directory. Because of variant performance criteria concerning the service nodes, QoS 
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parameters of the same service implemented on different service nodes are not the same. 

When service composition is carried on, the service directory lookups and selects services 

based on specific QoS rules. 

The service composition process is depicted in Fig. 1. First, the user client submits the 

composition request to the gateway of SON (step 1). The request contains the information 

about the composited application, e.g., tasks of the application and the correlation between 

them, input and output parameters of tasks, QoS requirements of the composited application. 

The gateway forwards the request to the service directory (step 2). The service directory 

searches among the services for each task based on its functional descriptions. Then, the 

service directory computes the optimal service selection strategy based on non-functional 

properties of tasks and invokes services hop by hop until the last service is executed (step3-5). 

At last, the service composition result is returned to the user via the gateway (step6-7). 
 

 

Fig. 1. System Environment 

2.2 System Architecture 

In this section, we explain SON in detail. To specify service composition, we modified Fig. 1 

and represented a service composition example in Fig. 2. As shown in Fig. 2-(a), the 

functional profile of a composition request can be denoted by a task set 
1 2

{ , ,..., , }
a M

TS T T T T= , in 

which 
a
T  is the a

th
 task of the application and M is the total task number. As shown in Fig. 

2-(a), tasks T1 and T4 have sequential order in the task set. Tasks T2 and T3 have parallel order, 

whereas tasks T5 and T6 have selective order. The details of service composition topologies are 

further illustrated in Section 2.3.2. When the composition request is forwarded to the service 

directory, the search and match process is carried out based on the task set. As shown in Fig. 2- 

(b), if all tasks have been matched with proper services, the service directory transforms the 

task set to service sets
1 2

{ , ,..., , }
i M

SSs SS SS SS SS= , in which iSS  is the corresponding service set 

of service iS  
for the task aT . There are several service instances in each service set. These 

service instances have the same function and different non-functional parameters. They may 

be implemented on different service nodes. Finally, the service directory selects the optimal 
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service composition path (SCP) from all candidate paths. As shown in Fig. 2-(c), 

1 1 2 1 3 1 4 1 6 1
{ , , , , }SCPI S I S I S I S I S I

 
and 

1 1 2 1 3 1 4 2 5 1
{ , , , , }SCPII S I S I S I S I S I  are two candidate paths for 

service composition. In this figure, i kS I  means the k
th
 instance of service i . For two candidate 

SCPs, not only service instance sets are different, but also overlay links between service 

instances are not the same. Suppose there are M  services in an application and iN  Instances 

for each service i , there turns to be 
1

M

i

i

N
=
∏  candidate SCPs for service composition. 

 

 

Fig. 2. System Architecture 

First, the service directory chooses service instances with the same function for each service 

set. This process produces plenty of different candidate SCPs. They have the same topology 

with the task set. Since the task set often possesses several baseline topologies (like parallel 

and selective), candidate SCPs can’t be handled by optimization algorithms directly. We 

propose a mechanism to transform basic topologies to the simple sequence topology. 

Therefore, topologies of candidate SCPs can be transformed to sequence topologies. Then the 

service selection algorithm selects the optimal SCP from all possible candidate SCPs 

considering load balance (e.g. CPU occupation rate and bandwidth occupation rate) and 

multiple constraints (e.g. cost, delay and reliability). 

2.3 Problem Definition 

In this section, we first discuss load balance and QoS parameters of service instances, and then 

specify service composition topologies and the influence to attributes of SCPs. At last, we 

present the formal definition of service selection problem with regard to multi-constraint 

optimal service composition path (MCOSCP). 

2.3.1 Load Balance and QoS Parameters 

In this section, we refer to two load balance parameters and three QoS parameters of service 

instances.  

CPU occupation rate (Cor) is the parameter depicting the percentage of the computing 
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ability required by a service instance in the available computing ability of the corresponding 

SN. Cor can be calculated using 
i k j

required available

S I SNCor CPU CPU= . 
i k

required

S ICPU  represents the 

computing ability required by a service instance i kS I , which can be estimated when i kS I  is 

developed and uploaded to the service directory. 
j

available

SNCPU  represents the available 

computing ability of the SON node jSN  on which the i kS I  is implemented. It can be detected 

and advertised periodically by jSN . 

Bandwidth occupation rate (Bor) is similar to the Cor, which describes the bandwidth’s 

expected usage percentage of overlay links between candidate service instances. These service 

instances may be implemented on diverse SNs. Bor can be calculated by 

c c

required available

L LBor BW BW= . 
c

required

L
BW  represents the bandwidth of cL  required by two 

candidate service instances. It can be estimated by the output data rate of predecessor service 

instance or the input data rate of successor service instance. 
c

available

LBW  represents the 

unoccupied bandwidth of cL , which can be measured by a lightweight approach [18]. 

Cost (C) refers to the price which the service requester pays for the specific service 

instance. When the service instance is registered, the cost is also uploaded to the service 

directory in the meantime. If the cost of a service instance alters, the information in the service 

directory must be kept updated.  

Delay (D) measures the overall time of the service execution, which is calculated 

by
1 2 3

D T T T= + + . 1T  is the service execution time which measures the interval between the 

moment when the service instance starts executing and the moment when the execution is 

finished. 2T  is the request queuing time which measures the interval between the moment 

when the service request is arriving at the queue of the corresponding service instance and the 

moment when the service instance starts to be executed. 3T  is the transporting time which is 

the sum of transmission time and propagation time.  

Reliability (R) represents the proportion of the system’s available period, which can be 

calculated by available totalR T T= . In this formula, availableT  is the time when the system works 

normally,  totalT  is the total observed time. Because practical systems are generally reparable 

systems, they are in the cycle composed of failure and normal statuses. Consequently, availableT  

is a set of time slices when the service instances in the system are available, i.e. 

1

N

available i

i

T TS
=

=∑ . Then, the reliability turn to be calculated by 
1

N

i total

i

R TS T
=

=∑ . 

2.3.2 Service Composition Topologies 

There are four basic topologies of service composition, which is sequence, parallel, selective 

and loop topologies. These topologies can construct the vast majority of service composition 

applications. In this section, we describe their conversion to specific service sets and analyze 

how load balance and QoS parameters are calculated. 
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Fig. 3. Service Composition Topologies 

Discussion on the Sequence Topology 

As shown in Fig. 3-(a), the sequence service composition topology can be converted to SeqSS . 

In SeqSS  shown in the right side of Fig. 3-(a), the service selection is accomplished by 

selecting any service instance i kS I ( 1,..., , 1,..., ii M k N= = ) in each service set 
iSS . Apparently, 

there are 
1

M

i

i

N
=
∏ candidate SCPs, and each path is a possible solution to the MCOSCP problem. 

The load balance and QoS parameters of the d
th
 SCP is calculated by the formula below: 

1

1 1

1

1

1

1

( ) ( )

( ) ( )

( ) ( )

( ) max( ( ),...,  

                        ( ),...,  ( ))

( ) max( ( ),...,

         

i

i

i

i M

k

M
Seq

d i k

i
M

Seq

d i k

i
M

Seq

d i k

i
Seq

d k

i k M k
Seq in

d S I

C SCP C S I

D SCP D S I

R SCP R S I

Cor SCP Cor S I

Cor S I Cor S I

Bor SCP Bor L

=

=

=

=

=

=

=

=

∑

∑

∏

1

               ( ),...,  ( ),  ( ))

1,..., ,  1,..., ,  1,..., .

i k M k M ki M M

in in out

S I S I S I

M

i i i

i

Bor L Bor L Bor L

k N i M d N
=

= = = ∏

                  

(1) 

where 
i ki

in

S IL and 
i ki

out

S IL

 
are respectively the input and output overlay links of service node j

SN  

on which the service instance 
ii kS I  is implemented. 

Discussion on the Parallel Topology 

As shown in Fig. 3-(b), the parallel service composition topology can be converted to 
Par

SS . In 

Par
SS  shown in the right side of Fig. 3-(b), the service selection is accomplished by selecting 



1112                            Liao et al : Service Composition based on Niching Particle Swarm Optimization in Service Overlay Networks 

any service instance 
i k

S I ( 1,..., , 1,...,
i

i M k N= = ) in each service set 
iSS . This process of 

Par
SS  is 

similar to that of Seq
SS . And there are also 

1

M

i

i

N
=
∏  candidate SCPs for 

Par
SS . The load balance 

and QoS parameters of the d
th
 SCP is calculated by this formula:  

1

1

1

1

1

1

( ) ( )

( ) max( ( ),...,  

                     ( ),...,  ( ))

( ) ( )

( ) max( ( ),...,  

                        ( ),...,  (

i

i M

i

i

M
Par

d i k

i
Par

d k

i k M k
M

Par

d i k

i
Par

d k

i k M

C SCP C S I

D SCP D S I

D S I D S I

R SCP R S I

Cor SCP Cor S I

Cor S I Cor S

=

=

=

=

=

=

∑

∏

1 11 1

1

))

( ) max( ( ),  ( ),...,

                        ( ),  ( ),...,  ( ),  ( ))

1,..., ,  1,..., ,  1,..., .

M

k k

i k i k M k M ki i M M

k
Par in out

d S I S I

in out in out

S I S I S I S I

M

i i i

i

I

Bor SCP Bor L Bor L

Bor L Bor L Bor L Bor L

k N i M d N
=

=

= = = ∏

               

(2) 

Discussion on the Selective Topology 

As shown in Fig. 3-(c), the selective service composition topology can be converted to 
Sel

SS . 

In 
Sel

SS  shown in the right side of Fig. 3-(c), the service selection is accomplished by selecting 

any service instance 
i k

S I ( 1,..., , 1,...,
i

i M k N= = ) in any service set 
iSS . Each service set 

iSS  is 

selected depending on the probability 
iSSP (

1

1
i

M

SS

i

P
=

=∑ ). Apparently, there are 
1

M

i

i

N
=
∑  candidate 

SCPs and each path is a possible solution to the MCOSCP problem. The load balance and QoS 

parameters of the d
th
 SCP is calculated by this formula: 

1

1

1

1

1

( ) ( ( ) )

( ) ( ( ) )

( ) ( ( ) )

( ) ( ( ) )

( ) (max( ( ),  ( )) )

1,..., ,  

i i

i i

i i

i i

i k i k ii i

M
Sel

d i k SS

i
M

Sel

d i k SS

i
M

Sel

d i k SS

i
M

Sel

d i k SS

i
M

Sel in out

d S I S I SS

i

i i

C SCP C S I P

D SCP D S I P

R SCP R S I P

Cor SCP Cor S I P

Bor SCP Bor L Bor L P

k N

=

=

=

=

=

= ×

= ×

= ×

= ×

= ×

=

∑

∑

∑

∑

∑

1

1,..., ,  1,..., .
M

i

i

i M d N
=

= = ∑

                     

(3) 

Discussion on the Loop Topology 

As shown in Fig. 3-(d), the loop service composition topology can be converted to 
Loop

SS . In 

LoopSS  shown in the right side of Fig. 3-(d), the service selection is accomplished by selecting 

any service instance 
i k

S I ( 1,..., , 1,...,
i

i M k N= = ) in each service set 
iSS . The selected service 

instances will be executed loop
N  times in the whole service composition process. The number 

of candidate SCPs of 
LoopSS

 
is the same with that of Seq

SS , i.e. 
1

M

i

i

N
=
∏ . The load balance and 

QoS parameters of the d
th
 SCP is calculated by this formula: 
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1

1

1

1

1

1

( ) ( )

( ) ( )

( ) ( )

( ) max( ( ),...,  

                         ( ),...,  ( ))

( ) max( (

i

i

i

i M

k

M
Loop

d loop i k

i
M

Loop

d loop i k

i
M

Loop

d i k

i
Loop

d k

i k M k
Loop

d S I

C SCP N C S I

D SCP N D S I

R SCP R S I

Cor SCP Cor S I

Cor S I Cor S I

Bor SCP Bor L

=

=

=

= ×

= ×

=

=

=

∑

∑

∏

1

1 1

1

),...,  ( ),...,  

                         ( ),  ( ), ( ))

1,..., ,  1,..., ,  1,..., .

i ki

M k M k M k kM M M

in in

S I

in out

S I S I S I S I

M

i i i

i

Bor L

Bor L Bor L Bor L

k N i M d N

→

=

= = = ∏
              

(4) 

where 
1 1M k kM

S I S I
L → is the overlay link from 

MM kS I  to 
11 kS I
 
marked by loop

N
 
in Fig. 3-(d) . 

In this section, the conversion and attributes calculation of four basic topologies are 

discussed. Practically, a complex service composition application can be converted to the 

simple sequence topology using this mechanism. And then we can calculate QoS and load 

balance parameters using the sequence topology and solve the MCOSCP problem easily. 

2.3.3 Problem Formulation 

Suppose there is V candidate SCPs in the MCOSCP problem. The MCOSCP problem is to 

find a SCP dSCP  which minimizes the load balance metric 
dSCPZ  while satisfying constraints. 

The mathematical formulation of MCOSCP problem is presented as follows. 

  ( ) ( )
dSCP d d

Min Z Cor SCP Bor SCPα β= × + ×                             (5) 

 Subject to  

( )
d o

C SCP C≤                                                                     (6) 

( )
d o

D SCP D≤                                                                     (7) 

( )
d o

R SCP R≥                                                                      (8) 

where 1,  ... ,d V= . oC , oD  and oR  are the corresponding objective value of cost, delay and 

reliability. ( )dC SCP , ( )dD SCP
 
and ( )dR SCP  are respectively the cost, delay and reliability of 

dSCP . ( )dC SCP  and ( )dD SCP  must be no more than their corresponding objective value. 

( )dR SCP  must be no less than oR . 

The objective function combines two optimization functions (CPU occupation rate and 

bandwidth occupation rate) to evaluate the load pressure of overlay nodes and links using this 

candidate SCP. α and β are the corresponding weights to control the relative significance of 

Cor and Bor . This objective function could guarantee that the service selection procedure is 

able to avoid “hot spots” (SON nodes which are burdened with a heavy load of services) and 

“hot lines” (SON links which are burdened with heavy traffic) in SON. The MCOSCP 

problem is a non-linear NP-complete problem [8]. Researchers usually search for approximate 

solutions for this kind of problems. 

3. Niching PSO for Service Composition 

3.1 Particle Swarm Optimization (PSO) 

PSO is a population based stochastic algorithm proposed by Kennedy and Eberhart [7]. It is 

one form of swarm intelligence inspired by the behavior of bird flocks. In PSO, a Swarm 
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composed by m particles flying through M-dimensional search space. When one particle is 

searching, it updates its position based on its inertia, the best position which it has reached and 

the best position which all particles in the swarm have reached. In this process, the position of 

each particle represents a candidate solution to the problem. Additionally, particles have a 

fitness function to evaluate their best positions and velocities to calculate their inertia. The 

algorithm is initialized with particles scattering randomly, and searches for the optimal 

solution by repeating the position update of particles. PSO attempts to balance exploration and 

exploitation by using personal and social information. Unlike other heuristic algorithms, PSO 

is easy to implement with less parameters. It takes good effect in solving difficult optimization 

problems. 

At the t
th
 iteration (

max
1,2,...,t T= ), the position of the b

th
 particle ( 1,2,...,b m= ) is denoted 

by 1 2( , ,..., ,..., )t t t t t

b b b bi bMx x x x x= , in which t

bix  is the i-dimension position of the b
th
 particle. The 

velocity of b
th
 particle is denoted by 1 2( , ,..., ,..., )t t t t t

b b b bi bMv v v v v= , in which t

biv  is the i-dimension 

velocity of the b
th
 particle at the t

th
 iteration. The best position which the b

th
 particle has ever 

reached is denoted by 1 2( , ,..., ,..., )t t t t t

b b b bi bMp p p p p= . The best position which all particles have 

ever reached is denoted by 1 2( , ,..., ,..., )t t t t t

g g g gi gMp p p p p= . The value of fitness function with t

g
p  

is optimal subject to constraints in the swarm. The i-dimensional position and velocity of b
th
 

particle is updated as below: 
1

1 2
1 1

( ) ( )t t t t t t

bi bi bi bi gi bi
t t t

bi bi bi

v v c p x c p x

x x v

ω ξ η+

+ +
= + − + −
= +

                                   

(9) 

where ω is the inertia weight which controls the impact of current velocity to the velocity in 

the next iteration. 1c  and 2c  are known as learning factors, which together balance the impact 

of personal and local information. ξ and η
 
are random numbers uniformly distributed between 

zero and one. The velocity of particles are restricted between maxV−  and maxV . Table 1 presents 

a standard PSO algorithm. 

Table 1. A Standard PSO Algorithm 

 
 

Let 

maxT  be the max iteration number; 

m  be the size of the PSO swarm; 

1 2( , ,..., ,..., )t t t t t

b b b bi bM
x x x x x=  be the bth particle’s M-dimensional position at the tth iteration; 

1 2( , ,..., ,..., )t t t t t

b b b bi bMv v v v v=  be the bth particle’s velocity at the tth iteration; 

1 2( , ,..., ,..., )t t t t t

b b b bi bMp p p p p=  be the best position which the bth particle has ever reached; 

1 2( , ,..., ,..., )
t t t t t

g g g gi gMp p p p p=  be the best position which all particles have ever reached; 

()fitness  be the fitness function; 

For each particle b  in the swarm: 

Step1: 1t = ; 

Initialize 
1

b
x  randomly; 

Initialize 
1

b
v  randomly; 

Initialize 
1

bp , 
1 1

b bp x= ; 

Initialize 
1

gp  to be the one with the best fitness in 
1 ,  1,...,bp b m= ; 

Step2:  Calculate ( )tbfitness x ; 
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Step3:  If ( )tbfitness x  is better than ( )tbfitness p , then 
t t

b bp x= ; 

Step4:  Let 
t

gp  be the one with the best fitness in ,  1,...,t

bp b m= ; 

Step5:  Update particle’s position and velocity with Eq. 9, t ++ ; 

Step6:  If maxt T≤ , go to step2; 

Step7:  Output. 
 

3.2 Niching Technique for PSO 

 

 

Fig. 4. Niching PSO Structure 

Niching technique attempts to find multiple solutions to optimization problems or the global 

optimal solution in the presence of massive local optimal solutions. Niching technique is 

oriented in the genetic algorithm (GA) [19] and extensively used in evolution algorithms. 

Niching technique is classified into two categories: parallel and sequence. A parallel niching 

method searches for optimal solutions using several niches simultaneously, and could find all 

optimal solutions in once execution. A sequence niching method searches distinct parts of the 

solution space using one niche, and finds all optimal solutions iteratively.  

There are few PSO algorithms with niching technique proposed recently, including 

NichePSO [9] and SPSO [10]. NichePSO is the first implementation of niching mechanism in 

PSO, and adopts a main-swarm and several sub-swarms to balance the exploration and 

exploitation abilities. SPSO references species genetic algorithm [20] to construct species, and 

applies normal PSO algorithm to species. Most niching methods of PSO have several tough 

problems, like reliance on the prior knowledge of the solution space or high computational 

complexity. Unlike these existing PSO algorithms with niching technique, lbest PSO with ring 

topology [11] is simple, and needs no prior knowledge. With local memory and a slow 

communication topology, lbest PSO with ring topology induces stable niching ability. 

Consequently, it achieves superior performance in locating multiple solutions and finding one 

global optimal solution in the presence of massive local optimal solutions. Due to its 

outstanding “cross-trap” capability, we adopt lbest PSO with ring topology (hereinafter 

Niching PSO) to improve the accuracy of search for optimal solutions in the MCOSCP 

problem. 

In Niching PSO, each particle interacts only with its immediate neighbors. The difference 

between Niching PSO and standard PSO is the t

gp  
of b

th
 particle has changed to the optimal 

position among 1

t

bp − , t

bp , 1

t

bp + , e.g., b
th
 particle’s neighborhood best position ,

t

n bp . The 
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structure of Niching PSO is illustrated in Fig. 4. It uses a “wrap-around” topology, i.e. the first 

particle is the neighbor of the last particle and vice versa. Eq. 9 could be rewritten as below: 
1

1 2 ,
1 1

( ) ( )
t t t t t t

bi bi bi bi n bi bi
t t t

bi bi bi

v v c p x c p x

x x v

ω ξ η+

+ +
= + − + −
= +

                                

(10) 

 

where ,

t

n bip  is the i-dimensional component of ,

t

n bp . The ring topology makes each particle 

search thoroughly in its local neighborhood before propagating the information throughout the 

population [11]. This mechanism increases the opportunity of finding the true optimal solution 

in the MCOSCP solution space. 

3.3 Niching PSO for MCOSCP Problem 

In this section, we apply Niching PSO to the MCOSCP problem. First we describe the 

mapping from MCOSCP to Niching PSO domain. Then we present the fitness function 

selected for MCOSCP problem. Finally, we explain the update of particles, and specify the 

parameters configuration of the algorithm.  

 

 

Fig. 5. Mapping MCOSCP to Niching PSO Domain 

3.3.1 Mapping MCOSCP to Niching PSO Domain 

The most crucial point in order to apply Niching PSO to the MCOSCP problem is mapping 

MCOSCP to Niching PSO domain. When a service composition request is forwarded to the 

service directory, it can be denoted by a task set 1 2
{ , ,..., , }

a M
TS T T T T= . Then the service 

directory transforms the task set to service sets 1 2
{ , ,..., , }

i M
SSs SS SS SS SS= , as shown in Fig. 5. 

The system uses the Niching PSO algorithm to select optimal service instances for the 

MCOSCP problem. In this algorithm, the mapping between service instances and a particle in 

the population is presented in Fig. 5. Each index of service set corresponds with a specific 

dimension number of the particle. Position values of a particle represent instances’ indexes, i.e. 

a possible solution for the problem. Suppose there are m particles in a swarm, possible 

solutions of the MCOSCP problem are presented by a m M×  position matrix of all particles. 

3.3.2 Fitness Function for MCOSCP 
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The fitness function for the MCOSCP problem not only minimizes the objective function Eq. 

5 but also fulfills the constraints Eq. 6-Eq. 8. The fitness function reflects to what degree 

solutions improve the objective function. In the meantime, it can’t violate the constraints Eq. 

6-Eq. 8. With Niching PSO, the fitness function guides particles to gather around the optimal 

solution in the solution space of the MCOSCP problem. The typical fitness function according 

with these descriptions is a mixture of objective function and penalty function. The objective 

function relates with Eq. 5 or its transformation. The penalty function is composed of 

constraints Eq. 6-Eq. 8, and punishes the objective function when a solution violates at least 

one constraint. According to above descriptions, the fitness function is defined as: 

( ) ( )
dd SCP dFit SCP Z Con SCP= +                                              (11) 

where ( ) ( )
dSCP d d

Z Cor SCP Bor SCPα β= × + ×  is the original objective function representing 

load factors which will be minimized. The penalty function ( )dCon SCP  measures to what 

extent a solution violates constraints, and equals zero if a solution conforms to all constraints.  

1

2

3

( ) max(0,( ( ) ) )
                  max(0,( ( ) ) )
                  max(0,( ( )) )

d d o o

d o o

o d o

Con SCP C SCP C C
D SCP D D
R R SCP R

λ
λ
λ

= × −
+ × −
+ × −

                                     (12) 

where max(0, ( ( ) ) )
d o o

C SCP C C−  measures the proportion that the cost of
 dSCP  exceeds oC  

when ( )dC SCP  violates Eq. 6. Otherwise, it returns zero. Similarly, max(0, ( ( ) ) )
d o o

D SCP D D−  

measures the proportion that the delay of
 dSCP  exceeds oD , and max(0, ( ( )) )o d oR R SCP R−  

measures the proportion that 
o

R
 
exceeds the reliability of

 d
SCP . λ 1, λ 2, λ 3 are weights to 

control the importance of max(0, ( ( ) ) )d o oC SCP C C− , max(0, ( ( ) ) )d o oD SCP D D−  and 

max(0, ( ( )) )
o d o

R R SCP R−  in the penalty function which pushes the swarm away from 

infeasible solutions. According to above statement, it is known that the smaller the value of 

fitness function is, the better the solution is. 

3.3.3 Particles’ update 

In the t
th
 iteration of Niching PSO, the b

th
 particle’s i-dimensional velocity is updated 

according to the velocity at last iteration, its personal best position t

bip  and neighborhood best 

position ,

t

n bip . Then its i-dimensional position is updated by the updated velocity. This process 

is formulated by Eq. 13. 

 

1

1

1 1 1

11

1

2

,

1

2

 . ( )

 .

( )

 1

) (
t t t t t t t t t t t

bi bi bi bi n bi

t t t t t t

bi bi bi bi bi bit

bi t t

bi

bi

bi

X V with prob p X V X V
X

X V with prob p

v v c p x c p x

p

ω ξ η
+ + +

+

+

+

= + − +
   + = + − +   =  + = − 

−

               

(13) 

where tω  is the time-variant inertia weight which controls the inheritance from the velocity at 

last iteration. 1

t
c  and 2

t
c  are time-variant learning factors which let the particle move towards 

personal best and neighborhood best positions. tω , 1

t
c  and 2

t
c  together with proper values 

could balance the particle’s exploration and exploitation capabilities. tξ  and tη  are random 

numbers uniformly distributed between zero and one. They keep the particle moving randomly 

to escape the local optimum. Due to the value of 1t

biX +  represents the index of i
th
 service 

instance, it must be an integer. Otherwise, it must be rounded to the nearest smaller integer or 

to the nearest larger integer randomly such that the mean error is zero. In the next sections, the 

parameters of Eq. 13 are discussed in detail. 
Time-variant inertia weight 

The selection of inertia weight is very important for the convergence of the Niching PSO 
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algorithm. A large inertia weight facilitates exploration to search new areas while a small 

inertia weight tends to facilitate exploitation to fine-tune the current search area [12]. In PSO, 

the balance between exploration and exploitation abilities is mainly controlled by the inertia 

weight [13]. Well, the exploration and exploitation capability of an algorithm is a tradeoff. 

Different solution spaces need different combinations of exploration and exploitation abilities. 

In general, particles in the swarm need to explore more to acquire primary knowledge in the 

initial stage, and need to exploit more to utilize existing information with the iteration 

increases, especially in the late stage. This can be achieved by using a linearly decreasing 

inertia weight, as shown in Eq. 14.  

max max min max
( )t t Tω ω ω ω= − −                                            (14) 

where 
max

ω  and 
min

ω  are the maximum and minimum value of inertia weight; 
max
T  is the 

maximum iteration number. Through empirical studies, Shi and Eberhart [15] have observed 

that the optimal solution can be improved by varying the value of tω  from 0.9 (
max

ω ) at the 

beginning of the search to 0.4 (
min

ω ) at the end of the search for most problems. 

Asynchronous Time-variant Learning Factors 

There are two learning factors in the Niching PSO algorithm. 
1
c  is the cognitive learning 

factor which pulls a particle to its best position which it have ever reached. 
2
c  is the social 

learning factor which pulls a particle to neighbors’ best position. 
1
c  and 

2
c

 
are respectively the 

weights controlling a particle’s memorability of personal best and social best position. If they 

are small, the particle roams across the search space mainly by inertia. No matter which of 

them is large, the particle will fly to the local optimum with very large opportunity. So the 

exploration and exploitation capabilities of a particle could be compromised by tuning the 

values of inertia weight and learning factors properly. In order to cooperate with linearly 

decreasing inertia weight, asynchronous time-variant learning factors are proposed [14]. This 

mechanism enhances global search in the initial stage, and encourages particles to converge to 

neighborhood optima in the late stage. It can be realized by using decreasing cognitive 

learning factor 1

t
c

 
and increasing social learning factor 2

t
c  . The values of 1

t
c

 
and 2

t
c

 
at t

th
 

iteration is calculated by Eq. 15. 

1 1 1 max 1

2 2 2 max 2

( )

( )

t

f i i
t

f i i

c t c c T c

c t c c T c

= − +
= − +

                                                   (15) 

where 
1ic  and 

1 fc  are the initial and final values of 1

t
c . 2ic  and 2 fc  are the initial and final 

values of 2

t
c . According to previous research [14], it is effective to adopt settings in Eq. 16 for 

most situations. 

         1 1 2 22.5,  0.5,  0.5,  2.5i f i fc c c c= = = =                                     (16) 

Position Range 

Because the i-dimensional position value k of the b
th
 particle represents the i

th
 service instance 

i kS I , the range of i-dimensional position t

bix  is the same with that of k in i kS I , i.e. [1,  ]iN . If the 

i-dimensional position oversteps the range, the candidate solution with it will be invalid. 

Based on above descriptions, the range of b
th
 particle’s i-dimensional position t

bix  is adjusted 

by Eq. 17. 

1         1
    1,...,

      

t
t bi

tbi
i bi i

if x
x i M

N if x N

 <= = >
                                                  (17) 

Velocity Range 

The range of particle’s velocity is also important for the algorithm. Small range of velocity 
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may slow down the search process. Well, large range of velocity may cause particles to fly 

outside the valid range frequently. In the worst case, particles will oscillate between the 

minimum and maximum bounds of their positions, i.e. [1,  ],  1,...,iN i M= . The maximum 

absolute value of velocity needs to be smaller than or equal to the maximum value of 

corresponding position. Therefore, the value of t

biv  is adjusted by Eq. 18. 

N        
       1,...,

      

t
t i bi i

tbi
i bi i

if v N
v i M

N if v N

− < −= =+ > +
                                            (18) 

Niching PSO Algorithm for MCOSCP Problem 

The proposed Niching PSO algorithm for the MCOSCP problem is presented in Table 2. 

Table 2. Niching PSO Algorithm 

 
 

Let 

maxT  be the max iteration number; 

m be the size of the PSO swarm; 

1 2( , ,..., ,..., )t t t t t

b b b bi bMx x x x x=  be the b
th
 particle’s M-dimensional position at the t

th
 iteration; 

1 2( , ,..., ,..., )t t t t t

b b b bi bMv v v v v=  be the b
th
 particle’s velocity at the t

th
 iteration; 

1 2( , ,..., ,..., )t t t t t

b b b bi bMp p p p p=  be the best position which b
th
 particle has ever reached; 

, , 1 , 2 , ,( , ,..., ,..., )t t t t t

n b n b n b n bi n bMp p p p p=  be the best position among 1 1, ,t t t

b b bp p p− + ; 

()fitness  be the fitness function; 

For each particle b in the swarm: 

Step1: 1t = ; 

Initialize 
1

bx  randomly; 

   Initialize 
1

bv  randomly; 

   Initialize 
1

bp , 
1 1

b bp x= ; 

Initialize 1

,n b
p  to be the one with the best fitness in 

1 1 1

1 1, ,b b bp p p− + ; 

Step2: Calculate ( )tbfitness x ; 

Step3: If ( )tbfitness x  is better than ( )tbfitness p , then 
t t

b bp x= ; 

Step4: Let ,

t

n bp  be the one with the best fitness in 1 1, ,t t t

b b bp p p− + ; 

Step5: Update particle’s position and velocity with Eq. 13, t ++ ; 

Step6: If maxt T≤ , go to step2; 

Step7: Output. 
 

 

4. Performance Analysis  

In this section, we evaluate the performance of proposed algorithm on MCOSCP problems. 

The simulation is composed of two parts: (1) the verification the effectiveness and efficiency 

of proposed Niching PSO algorithm; (2) the comparison of PSO algorithms with and without 

the niching technique. We change the number of SSs, the number of service instance, swarm 

size and iterations for testing the proposed algorithm. 
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4.1 Simulation Scenarios 

In our simulation scenarios, we first use a degree-based AS-level Internet topology generator 

Inet-3.0 [16] to generate a power-law random graph with 5000 nodes to represent a SON. We 

then randomly select 10~1000 nodes as SNs, one node as the gateway and another node as the 

service directory. Once the topology of SON is generated, nodes are connected into a 

topologically-aware overlay network using Pastry [17]. Service instances are randomly 

classified into different SSs and distributed to different SNs. 

For simulations, we use random QoS parameters with uniform distribution for service 

instances, including cost ~ [1,5]U , delay ~ [50,700]U  and reliability ~ [90%,99%]U . The 

computing ability of SNs and the CPU ability required by service instances are generated 

between [5, 100] randomly with uniform distribution. The available bandwidths of overlay 

links and the bandwidths required by two service instances are generated between [10kb/s, 

1000kb/s] randomly. Other common parameters in all test cases are presented below: 

� 20oC =  in (6); 2500oD =  in (7); 0.65oR =  in (8); 

� 1α β= =  in (11); 1 2 1λ λ= = , 3 100λ =  in (12); 

� max 0.9ω = , min 0.4ω =  in (14) as suggested in [15]; 

� 1 1 2 22.5,  0.5,  0.5,  2.5i f i fc c c c= = = =  in (15) as suggested in [14]; 

In our simulations, we test each case 10 times and take mean values for final results. 

4.2 Simulation Results 

We use execution time and accuracy rate (the fitness value of the real optimal SCP versus the 

fitness value of the optimal SCP which the algorithm finds) as metrics to evaluate the proposed 

algorithm. The simulation results are categorized into four series. In the first two series, we 

change the number of SSs (i.e. the number of task sets) and the number of service instances to 

evaluate the proposed algorithm with increasing swarm size. Then, we test the performance of 

Niching PSO while the iteration number is increasing linearly. Finally, we compare the 

performance of Niching PSO algorithm with the performance of standard PSO algorithm 

when service instances increase in the MCOSCP problem. 

4.2.1 Performance with Different Numbers of Service Sets 

 

Fig. 6. Accuracy Rate of Niching PSO with Different Numbers of Service Sets 

Fig. 6 and Fig. 7 show the accuracy rate and execution time of Niching PSO when the number 

of SSs is 5, 10 and 20, respectively. In these tests, the swarm size (number of particles) ranges 
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from 10 to 100. Well, the number of service instances maintains 3000 at all times. All tests use 

Niching PSO with 100 iterations. When the swarm size is 10, the accuracy rate with 20 SSs is 

20% higher than that with 5 SSs. When swarm size is larger than 20, accuracy rates increase 

slowly and finally achieve 100%. In the mean time, the number of SSs has little influence over 

the accuracy rate. The possible reason is service instances in each SS are more than those 

particles can handle when the numbers of SSs and particles are low. When the swarm size is 

smaller than 40, the difference of execution time under different numbers of SSs is not obvious. 

When the swarm size is larger than 60, the execution time with 20 service sets increases in 

relatively bigger extent. When the number of SSs is 20 and swarm size is 100, it only takes 5.5 

seconds to obtain the Pareto solution. The execution time will reduce significantly if obtaining 

an approximate solution. So the effectiveness and efficiency of the proposed algorithm under 

different numbers of SSs are proved.  

 

Fig. 7. Execution Time of Niching PSO with Different Numbers of Service Sets 

4.2.2 Performance with Different Numbers of Service Instances 

 

Fig. 8. Accuracy Rate of Niching PSO with Different Numbers of Service Instances 

Fig. 8 and Fig. 9 illustrate the accuracy rate and execution time of Niching PSO when the 

number of service instances is 30, 3000 and 300000. The number of SSs maintains 10 in all 

tests. The number of iterations maintains 100 in all tests. As shown in Fig. 8, the number of 

service instances is the key factor affecting the accuracy of Niching PSO. When the swarm 

size is 10, the accuracy rate with 30 service instances is 5% higher than that with 3000 service 
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instances, and 17.6% higher than that with 300000 service instances. Gaps among accuracy 

rates with different numbers of service instances narrow down when the swarm size increases. 

When the swarm size is 100, the accuracy rate with 30 service instances equals to that with 

3000 service instances, and is only 5% higher than that with 300000 service instances. In 

another aspect, as presented in Fig. 9, the execution time is hardly affected by increasing 

service instances when the swarm size is stationary. When the number of service instances is 

300000 and swarm size is 100, it only takes Niching PSO 5.1 seconds to achieve 95.5% 

approximate value of the Pareto solution. So the effectiveness and efficiency of the proposed 

algorithm under different numbers of service instances are proved. 

 

Fig. 9. Accuracy Rate of Niching PSO with Different Numbers of Service Instances 

4.2.3 Performance with Increasing Iterations 

 

Fig. 10. Accuracy Rate of Niching PSO with Increasing Iterations 

Fig. 10 and Fig. 11 present the accuracy rate and execution time when the number of iterations 

ranges from 50 to 500. In this process, numbers of SSs, service instances and particles 

maintain 10, 3000 and 20 respectively. As shown in Fig. 10, the accuracy rate improves little 

when the number of iterations increases. But in this process, the execution time of the 

proposed algorithm increases almost linearly by a large margin. According to the results 

drawn from the simulations of this section and the previous two sections, it can be concluded 

that in order to simultaneously improve the accuracy of niching PSO with little incremental 

execution time, one must increase the swarm size other than to increase the number of 
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iterations.  

 

Fig. 11. Execution Time of Niching PSO with Increasing Iterations 

4.2.4 Performance Comparison between Niching PSO and PSO 

 

Fig. 12. Accuracy Rate Comparison 

 

Fig. 13. Execution Time Comparison 
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In order to compare the performance of the standard PSO algorithm and the Niching PSO 

algorithm applied for the MCOSCP problem, we implement a Niching PSO algorithm and a 

standard PSO algorithm on a same MCOSCP problem. In this test scenario, the numbers of 

SSs and iterations are 10 and 200 respectively. Based on the conclusion of previous sections, 

the accuracy of the proposed algorithm is mainly influenced by the number of service 

instances in the MCOSCP problem. So we test two algorithms under cases in which the 

number of service instances range from 30 to 30000000. First, we use 20 particles in both two 

algorithms to search for optimal solutions. As shown in Fig. 12, when the number of service 

instances is below 30000, the difference of accuracy rates between Niching PSO and PSO is 

quite obscure. The gap of accuracy rate between Niching PSO and PSO enlarges with 

increasing service instances. When the number of service instances is 30000000, the accuracy 

rate of Niching PSO is 21% higher than that of PSO. In this extreme situation, even the 

accuracy rate of Niching PSO descends to 57.3%. Then we increase swarm size to 100 to 

improve the accuracy rate with the number of service instance higher than 30000. When the 

number of service instances is 30000000, the accuracy rate of Niching PSO is promoted 34%, 

and the accuracy rate of PSO is promoted 13%. In this situation, the accurate performance of 

Niching PSO is 43.6% higher than that of PSO. As shown in Fig. 13, Niching PSO spend 

almost 1 more seconds when the swarm size is 20 and 2.5 more seconds when the swarm size 

is 100 than PSO to achieve better accuracy rate. The accuracy and runtime are a tradeoff in the 

MCOSCP problem. In service composition, it’s quite worth for using the proposed algorithm 

to improve the accuracy of the system substantially while spending a little more execution 

time. 

5. Related Work 

Nowadays, extensive studies have been conducted related to service composition. Papers of 

this domain mainly refer to two aspects: semantic discussion of service composition and QoS 

discussion of service composition.  

Sirin et al. [1] studied applying hierarchical task network (HTN) planning to automatic 

web service composition. This paper is the first research proposing an algorithm which 

translates OWL-S (Ontology Web Language for Services) service descriptions to the HTN 

planning system SHOP2's (simple hierarchical ordered planner 2) domain.  

Kalasapur et al. [4] went further in the semantic research of service composition. They 

proposed a pervasive information communities organization (PICO) middleware to support 

service composition on semantic and syntactic layers. The semantic layer represents services' 

input and output types. The syntactic layer represents services' input and output formats. In 

service composition, the first step is to check whether there is a path between the input type 

and the output type of tasks in the semantic layer. If there is a path, the second step is to find 

the shortest path in the syntactic layer. This paper mainly focuses on the semantic and 

syntactic service selection in service composition. The QoS-aware service selection is not 

mentioned in this paper. 

In another aspect, there are a few papers addressing QoS in service composition. Zeng et al. 

[2] proposed local and global algorithms for QoS-aware service composition. This paper uses 

execution paths and plans to model all possibilities of the composite application. The local 

algorithm selects the optimal service for each task in the composite application. The global 

algorithm selects the optimal plan for all paths based on integer programming. Later papers 

applied this basic approach to diverse scenarios.  
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Estévez-Ayres et al. [6] proposed off-line and on-line algorithms for real-time service 

composition. The off-line algorithm computes all possible combination for selecting the 

optimal service path using a depth first search algorithm. The on-line algorithm improves the 

previous one by using a pruning technique. These algorithms select optimal services fulfilling 

QoS constraints with which real-time systems concern. But users' constraints are not 

mentioned in this paper. 

Gu and Nahrstedt [3] presented a decentralized service composition framework, called 

SpiderNet. SpiderNet maps the function graph into the best qualified ServFlow, which 

minimizes the utility function and conforms to QoS constraints in the meantime. The bounded 

composition probing (BCP) algorithm is proposed to probe service instances hop by hop. At 

last, SpiderNet sorts all qualified ServFlows and then selects the optimal one for execution. 

However, the service selection is too simple to handle numerous service instances. 

Park and Shin [5] proposed three power-aware algorithms for service composition on 

mobile devices: 1) dynamic QoS control for mobile applications; 2) Reconfiguration of the 

Service Composition Graph; 3) Service Discovery and Routing. The selection algorithm used 

in this paper can only deal with linear objective functions. 

There are several serious flaws of existing research: 1) users’ QoS requirements are not 

considered; 2) load balance factors are not addressed; 3) the proposed algorithms only aim at 

specific service composition problems, e.g., problems with one constraint and one objective 

function or problems with linear constraints and objective functions. 

In this paper, we have discussed the service view of load balance in service composition. 

Previous researches [21][22][23] have addressed the system view of resource allocation. An 

intelligent market model [21] has been proposed for resource provisioning and allocation in 

SON. In [22], the inherent selfishness of the peers is taken into account to build a strategic 

behavior model. Based on this model, a revenue-maximizing auction mechanism has also been 

presented for the optimization of the path stretch, the link stress, and the aggregate throughput 

of the network. M. H. Rezvani and M. Analoui [23] proposed distributed algorithms for 

managing the provisioning of multiple services and allocating the bandwidth to the users. 

6. Conclusion 

In this paper, we propose a Niching PSO algorithm to fulfill service composition request with 

QoS constraints and load balance demands. Niching PSO integrates niching technique to 

promote the “cross-trap” capability of PSO algorithm. Simulation results illustrate that 

Niching PSO is effective and achieves acceptable levels of efficiency for MCOSCP problem 

under almost all possible practical circumstances. Moreover, the accuracy rate of Niching PSO 

is higher than that of PSO, especially with numerous service instances. In the future, we may 

improve the performance of Niching PSO based on properties of solution space. The 

development of distributed service composition algorithm is also a recommended future 

direction. 
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