• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.039 seconds

Evaluation of Surrogate Models for Shape Optimization of Compressor Blades

  • Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.367-370
    • /
    • 2006
  • Performances of multiple surrogate models are evaluated in a turbomachinery blade shape optimization. The basic models, i.e., Response Surface Approximation, Kriging and Radial Basis Neural Network models as well as weighted average models are tested for shape optimization. Global data based errors for each surrogates are used to calculate the weights. These weights are multiplied with the respective surrogates to get the final weighted average models. The design points are selected using three level fractional factorial D-optimal designs. The present approach can help address the multi-objective design on a rational basis with quantifiable cost-benefit analysis.

  • PDF

Neural optimization networks with fuzzy weighting for collision free motions of redundant robot manipulators

  • Hyun, Woong-Keun;Suh, Il-Hong;Kim, Kyong-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.564-568
    • /
    • 1992
  • A neural optimization network is designed to solve the collsion-free inverse kinematics problem for redundant robot manipulators under the constraints of joint limits, maximum velocities and maximum accelerations. And the fuzzy rules are proposed to determine the weightings of neural optimization networks to avoid the collision between robot manipulator and obstacles. The inputs of fuzzy rules are the resultant distance, change of the distance and sum of the changes. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision avoidance of each joint. To show the validities of the proposed method computer simulation results are illustrated for the redundant robot with three degrees of freedom,

  • PDF

A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm (PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구)

  • Kim, Woong-Ki;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.

Study of Design Technology of a Turbo-impeller (터보 임펠러 설계기술에 관한 고찰)

  • Park, Young-Ha;Choi, Hyoung-Jun;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.16-25
    • /
    • 2011
  • A Turbo-impeller is widely used in industries as well as in aero engines. Its design technology has been developed since the early 20th century. However, the final configuration of the impeller depends on the designers. In this study, a whole design process was introduced and an optimization method to design an impeller was studied in order to design a better impeller without influence by designers. In particular, as the Artificial Neural Network was applied to the optimization, the computational time for the optimization was equivalent to the time consumed by the gradient method and its result was guaranteed as the optimum in the whole design domain. Using this method, any impeller can be improved by selecting design variables after measuring profiles of the impeller.

Path-based new Timing Optimization Algorithm for Combinational Networks (조합논리회로를 위한 새로운 Path-Based 타이밍 최적화 알고리듬)

  • 양세양;홍봉희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.9
    • /
    • pp.85-93
    • /
    • 1992
  • In this paper, the new timing optimization algorithm for combinational networks is proposed. First, we introduce the concept of P-path redundancy which is the extension of redundancy concept used in the testing of combinational networks. In this approach, the critical delay is minimized by removing the P-path redundant side inputs of the critical path, and more accurate timing optimization is possible by systematically considering the statically unsensitizable paths as well as the statically sensitizable paths. It's possible with all previous longest path based approaches that the critical delay of resulting network after timing optimization may be even increased. However, the proposed method guarantees to exclude such a possibility, and can be applied to optimize the timing of combinational networks in technology independent, and dependent phase.

  • PDF

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

Optimizing artificial neural network architectures for enhanced soil type classification

  • Yaren Aydin;Gebrail Bekdas;Umit Isikdag;Sinan Melih Nigdeli;Zong Woo Geem
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy.

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Jin, Sang-Ho;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a redundant manipulator.

  • PDF

Efficiency Optimization Control of IPMSM with AFLC-FNN Controller (AFLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.146-148
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications. This paper proposes efficiency optimization control of IPMSM drive using AFLC-FNN(Adaptive Fuzzy Learning Control Fuzzy Neural Network)controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The optimal current can be decided according to the operating speed and the load conditions. This paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF