• Title/Summary/Keyword: network optimization

Search Result 2,240, Processing Time 0.032 seconds

GAN-based Automated Generation of Web Page Metadata for Search Engine Optimization (검색엔진 최적화를 위한 GAN 기반 웹사이트 메타데이터 자동 생성)

  • An, Sojung;Lee, O-jun;Lee, Jung-Hyeon;Jung, Jason J.;Yong, Hwan-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.79-82
    • /
    • 2019
  • This study aims to design and implement automated SEO tools that has applied the artificial intelligence techniques for search engine optimization (SEO; Search Engine Optimization). Traditional Search Engine Optimization (SEO) on-page optimization show limitations that rely only on knowledge of webpage administrators. Thereby, this paper proposes the metadata generation system. It introduces three approaches for recommending metadata; i) Downloading the metadata which is the top of webpage ii) Generating terms which is high relevance by using bi-directional Long Short Term Memory (LSTM) based on attention; iii) Learning through the Generative Adversarial Network (GAN) to enhance overall performance. It is expected to be useful as an optimizing tool that can be evaluated and improve the online marketing processes.

  • PDF

Hybrid Technique for Locating and Sizing of Renewable Energy Resources in Power System

  • Durairasan, M.;Kalaiselvan, A.;Sait, H. Habeebullah
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.161-172
    • /
    • 2017
  • In the paper, a hybrid technique is proposed for detecting the location and capacity of distributed generation (DG) sources like wind and photovoltaic (PV) in power system. The novelty of the proposed method is the combined performance of both the Biography Based Optimization (BBO) and Particle Swarm Optimization (PSO) techniques. The mentioned techniques are the optimization techniques, which are used for optimizing the optimum location and capacity of the DG sources for radial distribution network. Initially, the Artificial Neural Network (ANN) is applied to obtain the available capacity of DG sources like wind and PV for 24 hours. The BBO algorithm requires radial distribution network voltage, real and power loss for determining the optimum location and capacity of the DG. Here, the BBO input parameters are classified into sub parameters and allowed as the PSO algorithm optimization process. The PSO synthesis the problem and develops the sub solution with the help of sub parameters. The BBO migration and mutation process is applied for the sub solution of PSO for identifying the optimum location and capacity of DG. For the analysis of the proposed method, the test case is considered. The IEEE standard bench mark 33 bus system is utilized for analyzing the effectiveness of the proposed method. Then the proposed technique is implemented in the MATLAB/simulink platform and the effectiveness is analyzed by comparing it with the BBO and PSO techniques. The comparison results demonstrate the superiority of the proposed approach and confirm its potential to solve the problem.

Reliability Optimization of Urban Transit Brake System For Efficient Maintenance (효율적 유지보수를 위한 도시철도 전동차 브레이크의 시스템 신뢰도 최적화)

  • Bae, Chul-Ho;Kim, Hyun-Jun;Lee, Jung-Hwan;Kim, Se-Hoon;Lee, Ho-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.26-35
    • /
    • 2007
  • The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.

Design of SVM-Based Polynomial Neural Networks Classifier Using Particle Swarm Optimization (입자군집 최적화를 이용한 SVM 기반 다항식 뉴럴 네트워크 분류기 설계)

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1071-1079
    • /
    • 2018
  • In this study, the design methodology as well as network architecture of Support Vector Machine based Polynomial Neural Network, which is a kind of the dynamically generated neural networks, is introduced. The Support Vector Machine based polynomial neural networks is given as a novel network architecture redesigned with the aid of polynomial neural networks and Support Vector Machine. The generic polynomial neural networks, whose nodes are made of polynomials, are dynamically generated in each layer-wise. The individual nodes of the support vector machine based polynomial neural networks is constructed as a support vector machine, and the nodes as well as layers of the support vector machine based polynomial neural networks are dynamically generated as like the generation process of the generic polynomial neural networks. Support vector machine is well known as a sort of robust pattern classifiers. In addition, in order to enhance the structural flexibility as well as the classification performance of the proposed classifier, multi-objective particle swarm optimization is used. In other words, the optimization algorithm leads to sequentially successive generation of each layer of support vector based polynomial neural networks. The bench mark data sets are used to demonstrate the pattern classification performance of the proposed classifiers through the comparison of the generalization ability of the proposed classifier with some already studied classifiers.

A Mathematical Model for Sewer Rehabilitation Planning by Considering Inflow/infiltration (불명수를 고려한 하수관거 정비 계획 수립을 위한 수학 모형)

  • Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Jae-Hee;Kim, Joong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.547-559
    • /
    • 2003
  • In this study, a mathematical model is developed for sewer rehabilitation planning by considering cost and inflow/infiltration. A sewer rehabilitation planning model is required to decide the economic life of the sewer by considering trade-off between cost and inflow/infiltration. And it is required to find the optimal rehabilitation timing, according to the cost effectiveness of each sewer rehabilitation within the budget. To solve the problem, we formulated a multiple objective mixed integer programming(MOMIP) model based on network flow optimization. The network is composed of state nodes and arcs. The state nodes represent the remaining life and the arcs represent the change of the state. The model considers multiple objectives which are cost minimization and minimization of inflow/infiltration. Using the multiple objective optimization, the trade-off between the cost and inflow/infiltration is presented to the planner so that a proper sewer rehabilitation plan can be selected.

Adaptive Route Optimization for Proxy Mobile IPv6 Networks (Proxy Mobile Ipv6 네트워크에서의 적응적 경로 최적화)

  • Kim, Min-Gi;Lee, Su-Kyoung
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.204-211
    • /
    • 2009
  • Proxy Mobile IPv6(PMIPv6) is that network-based mobility management protocol that network supports mobile node's mobility on behalf of the Mobile Node(MN). In PMIPv6 network, data packets from a Correspondent Node(CN) to a MN will always traverse the MN's Local Mobility Anchor(LMA). Even though, CN and MN might be located close to each other or within the same PMIPv6 domain. To solve this problem, several PMIPv6 Route Optimization(RO) schemes have been proposed. However, these RO schemes may result in a high signaling cost when MN moves frequently between MAGs. For this reason, we propose an adaptive route optimization(ARO) scheme. We analyze the performance of the ARO. Analytical results indicate that the ARO outperforms previous schemes in terms of signaling overhead.

An Optimal Investment Planning Model for Improving the Reliability of Layered Air Defense System based on a Network Model (다층 대공방어 체계의 신뢰도 향상을 위한 네트워크 모델 기반의 최적 투자 계획 모델)

  • Lee, Jinho;Chung, Suk-Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.105-113
    • /
    • 2017
  • This study considers an optimal investment planning for improving survivability from an air threat in the layered air defense system. To establish an optimization model, we first represent the layered air defense system as a network model, and then, present two optimization models minimizing the failure probability of counteracting an air threat subject to budget limitation, in which one deals with whether to invest and the other enables continuous investment on the subset of nodes. Nonlinear objective functions are linearized using log function, and we suggest dynamic programming algorithm and linear programing for solving the proposed models. After designing a layered air defense system based on a virtual scenario, we solve the two optimization problems and analyze the corresponding optimal solutions. This provides necessity and an approach for an effective investment planning of the layered air defense system.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products (농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화)

  • Gi Hoon Hong;Sunghyun Uhm;Hyungjune Jung;Sungwon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

Loss Optimization for Voltage Stability Enhancement Incorporating UPFC Using Particle Swarm Optimization

  • Kowsalya, M.;Ray, K.K.;Kothari, D.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.492-498
    • /
    • 2009
  • The placement of the UPFC is the major concern to ensure the full potential of utilization in the transmission network. Voltage stability enhancement with the optimal placement of UPFC using stability index such as modal analysis, Voltage Phasor method is made and the loss minimization including UPFC is formulated as an optimization problem. This paper proposes particle swarm optimization for the exact real power loss minimization including UPFC. The implementation of loss minimization for the optimal location of UPFC was tested with IEEE-14 and IEEE-57 bus system.