• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.027 seconds

Improving the Performances of the Neural Network for Optimization by Optimal Estimation of Initial States (초기값의 최적 설정에 의한 최적화용 신경회로망의 성능개선)

  • 조동현;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.54-63
    • /
    • 1993
  • This paper proposes a method for improving the performances of the neural network for optimization by an optimal estimation of initial states. The optimal initial state that leads to the global minimum is estimated by using the stochastic approximation. And then the update rule of Hopfield model, which is the high speed deterministic algorithm using the steepest descent rule, is applied to speed up the optimization. The proposed method has been applied to the tavelling salesman problems and an optimal task partition problems to evaluate the performances. The simulation results show that the convergence speed of the proposed method is higher than conventinal Hopfield model. Abe's method and Boltzmann machine with random initial neuron output setting, and the convergence rate to the global minimum is guaranteed with probability of 1. The proposed method gives better result as the problem size increases where it is more difficult for the randomized initial setting to give a good convergence.

  • PDF

Fitness Sharing Particle Swarm Optimization Approach to FACTS Installation for Transmission System Loadability Enhancement

  • Chang, Ya-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • Proper installation of Flexible AC Transmission Systems (FACTS) devices in existing transmission networks can enable power systems to accommodate more power transfer with less network expansion cost. The problem to maximize transmission system loadability by determining optimal locations and settings for installations of two types of FACTS devices, namely static var compensator (SVC) and thyristor controlled series compensator (TCSC), is formulated as a mixed discrete-continuous nonlinear optimization problem (MDCP). For solving the MDCP, in the paper, the proposed method with fitness sharing technique involved in the updating process of the particle swarm optimization (PSO) algorithm, can diversify the particles over the search regions as much as possible, making it possible to achieve the optimal solution with a big probability. The modified IEEE-14 bus network and a practical power system are used to validate the proposed method.

Base Station Placement for Wireless Sensor Network Positioning System via Lexicographical Stratified Programming

  • Yan, Jun;Yu, Kegen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4453-4468
    • /
    • 2015
  • This paper investigates optimization-based base station (BS) placement. An optimization model is defined and the BS placement problem is transformed to a lexicographical stratified programming (LSP) model for a given trajectory, according to different accuracy requirements. The feasible region for BS deployment is obtained from the positioning system requirement, which is also solved with signal coverage problem in BS placement. The LSP mathematical model is formulated with the average geometric dilution of precision (GDOP) as the criterion. To achieve an optimization solution, a tolerant factor based complete stratified series approach and grid searching method are utilized to obtain the possible optimal BS placement. Because of the LSP model utilization, the proposed algorithm has wider application scenarios with different accuracy requirements over different trajectory segments. Simulation results demonstrate that the proposed algorithm has better BS placement result than existing approaches for a given trajectory.

Enabling Route Optimization for Large Networks with Location Privacy Consideration

  • Thanh Vu Truong;Yokota Hidetoshi;Urano Yoshiyori
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.42-46
    • /
    • 2004
  • Mobile IP [9] was introduced to help the mobile user to be contacted with a single IP address even though the point-of-access changes. However, mobile IP creates the so-called 'triangle routing' which makes the delays for data packets longer, as well as creating unnecessary traffic at the home network of the mobile user. To overcome this, Route Optimization (RO) for mobile IP [1] was proposed, which eliminated the triangle routing phenomenon. But [l] requires that the network protocol stack of all existing hosts to change. Privacy is also another matter to be considered. This paper introduces a scheme called Peer Agent scheme to implement RO for mobile IP without requiring existing hosts to change. Method to preserve location privacy while still enabling RO is also considered.

  • PDF

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

Using Machine Learning to Improve Evolutionary Multi-Objective Optimization

  • Alotaibi, Rakan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.203-211
    • /
    • 2022
  • Multi-objective optimization problems (MOPs) arise in many real-world applications. MOPs involve two or more objectives with the aim to be optimized. With these problems improvement of one objective may led to deterioration of another. The primary goal of most multi-objective evolutionary algorithms (MOEA) is to generate a set of solutions for approximating the whole or part of the Pareto optimal front, which could provide decision makers a good insight to the problem. Over the last decades or so, several different and remarkable multi-objective evolutionary algorithms, have been developed with successful applications. However, MOEAs are still in their infancy. The objective of this research is to study how to use and apply machine learning (ML) to improve evolutionary multi-objective optimization (EMO). The EMO method is the multi-objective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D has become one of the most widely used algorithmic frameworks in the area of multi-objective evolutionary computation and won has won an international algorithm contest.

An Intelligent Machine Learning Inspired Optimization Algorithm to Enhance Secured Data Transmission in IoT Cloud Ecosystem

  • Ankam, Sreejyothsna;Reddy, N.Sudhakar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.83-90
    • /
    • 2022
  • Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.

Enhancement of Return Routability Mechanism for Optimized-NEMO Using Correspondent Firewall

  • Hasan, Samer Sami;Hassan, Rosilah
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2013
  • Network Mobility (NEMO) handles mobility of multiple nodes in an aggregate manner as a mobile network. The standard NEMO suffers from a number of limitations, such as inefficient routing and increased handoff latency. Most previous studies attempting to solve such problems have imposed an extra signaling load and/or modified the functionalities of the main entities. In this paper, we propose a more secure and lightweight route optimization (RO) mechanism based on exploiting the firewall in performing the RO services on behalf of the correspondent nodes (CNs). The proposed mechanism provides secure communications by making an authorized decision about the mobile router (MR) home of address, MR care of address, and the complete mobile network prefixes underneath the MR. In addition, it reduces the total signaling required for NEMO handoffs, especially when the number of mobile network nodes and/or CNs is increased. Moreover, our proposed mechanism can be easily deployed without modifying the mobility protocol stack of CNs. A thorough analytical model and network simulator (Ns-2) are used for evaluating the performance of the proposed mechanism compared with NEMO basic support protocol and state-of-the-art RO schemes. Numerical and simulation results demonstrate that our proposed mechanism outperforms other RO schemes in terms of handoff latency and total signaling load on wired and wireless links.

Research on Low-energy Adaptive Clustering Hierarchy Protocol based on Multi-objective Coupling Algorithm

  • Li, Wuzhao;Wang, Yechuang;Sun, Youqiang;Mao, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1437-1459
    • /
    • 2020
  • Wireless Sensor Networks (WSN) is a distributed Sensor network whose terminals are sensors that can sense and check the environment. Sensors are typically battery-powered and deployed in where the batteries are difficult to replace. Therefore, maximize the consumption of node energy and extend the network's life cycle are the problems that must to face. Low-energy adaptive clustering hierarchy (LEACH) protocol is an adaptive clustering topology algorithm, which can make the nodes in the network consume energy in a relatively balanced way and prolong the network lifetime. In this paper, the novel multi-objective LEACH protocol is proposed, in order to solve the proposed protocol, we design a multi-objective coupling algorithm based on bat algorithm (BA), glowworm swarm optimization algorithm (GSO) and bacterial foraging optimization algorithm (BFO). The advantages of BA, GSO and BFO are inherited in the multi-objective coupling algorithm (MBGF), which is tested on ZDT and SCH benchmarks, the results are shown the MBGF is superior. Then the multi-objective coupling algorithm is applied in the multi-objective LEACH protocol, experimental results show that the multi-objective LEACH protocol can greatly reduce the energy consumption of the node and prolong the network life cycle.