• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.029 seconds

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

The Importance of International Transport and Logistics Infrastructure in the Economic Development of the Country: The Case of the EU for Ukraine

  • Atamanenko, Yuliia;Komchatnykh, Olena;Larysa, Sukhomlyn;Viacheslav, Didkivskyi;Sulym, Borys;Losheniuk, Oksana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.198-205
    • /
    • 2021
  • For twenty years, in the EU there has been a trend of a lack of maritime infrastructure and a redundance of the road one, which has a negative impact on the economy. The intermodal transport market structure in the EU has not changed over the past ten years. The stability of transport systems due to the lack of changes in the transport market remains under threat, affecting supply chains and networks through the optimization of warehousing and transportation costs. The research methodology is based on a quantitative assessment of cause-and-effect relations between economic growth and transport and logistics in the EU. A statistical analysis of security indicators, intermodal and modal transport, international trade in goods within the EU and in the world trade in goods, the dynamics of GDP of the EU countries, the level of openness of the EU economy, investment and maintenance costs of different modes of transport and infrastructure has been carried out. The results show that in 2000- 2010 there were positive changes in the transport and logistics infrastructure of the EU, which had a positive effect on trade, openness of the economy of the EU, GDP growth. However, at that time, negative effects of environmental impact and the load on road and rail transport were accumulating. Investment in different modes of transport is limited, and technical maintenance and infrastructure maintenance costs form a significant part of GDP of the EU. A slowdown in economic growth leads to budget constraints and infrastructure financing gap. As a result, the freight and passenger intermodal and modal transport market structure remains virtually unchanged. The load on rail and road transport remains stable, despite the reduced level of transport hazards. Transport productivity has declined over the past ten years. Herewith, the intensification of trade and the openness of the EU economies require constant modernization and innovative renewal. The EU policy in this direction remains normative, uncontrolled, which is reflected in investment differences within the EU and maintenance costs.

On-line Finite Element Model Updating Using Operational Modal Analysis and Neural Networks (운용중 모드해석 방법과 신경망을 이용한 온라인 유한요소모델 업데이트)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • This paper presents an on-line finite element model updating method for in-service structures using measured data. Conventional updating methods, which are based on numerical optimization, are not efficient for on-line updating because they generally require repeated eigenvalue analyses until convergence criteria are met. The proposed method enables fully automated on-line finite element model updating, almost simultaneously with vibration measurement, without any user intervention or off-line procedures. The automated covariance-driven stochastic subspace identification (Cov-SSI) method is utilized to identify modal frequencies and vectors, and the identified modal data is fed to the neural network of the inverse eigenvalue function to produce the updated finite element model parameters. Numerical examples for a wind excited 20-story building structure shows that the proposed method can update the series of finite element model parameters automatically. It is also shown that sudden changes in the structural parameters can be detected and traced successfully.

Research on Deep Learning Performance Improvement for Similar Image Classification (유사 이미지 분류를 위한 딥 러닝 성능 향상 기법 연구)

  • Lim, Dong-Jin;Kim, Taehong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.1-9
    • /
    • 2021
  • Deep learning in computer vision has made accelerated improvement over a short period but large-scale learning data and computing power are still essential that required time-consuming trial and error tasks are involved to derive an optimal network model. In this study, we propose a similar image classification performance improvement method based on CR (Confusion Rate) that considers only the characteristics of the data itself regardless of network optimization or data reinforcement. The proposed method is a technique that improves the performance of the deep learning model by calculating the CRs for images in a dataset with similar characteristics and reflecting it in the weight of the Loss Function. Also, the CR-based recognition method is advantageous for image identification with high similarity because it enables image recognition in consideration of similarity between classes. As a result of applying the proposed method to the Resnet18 model, it showed a performance improvement of 0.22% in HanDB and 3.38% in Animal-10N. The proposed method is expected to be the basis for artificial intelligence research using noisy labeled data accompanying large-scale learning data.

Prediction of Student's Interest on Sports for Classification using Bi-Directional Long Short Term Memory Model

  • Ahamed, A. Basheer;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.246-256
    • /
    • 2022
  • Recently, parents and teachers consider physical education as a minor subject for students in elementary and secondary schools. Physical education performance has become increasingly significant as parents and schools pay more attention to physical schooling. The sports mining with distribution analysis model considers different factors, including the games, comments, conversations, and connection made on numerous sports interests. Using different machine learning/deep learning approach, children's athletic and academic interests can be tracked over the course of their academic lives. There have been a number of studies that have focused on predicting the success of students in higher education. Sports interest prediction research at the secondary level is uncommon, but the secondary level is often used as a benchmark to describe students' educational development at higher levels. An Automated Student Interest Prediction on Sports Mining using DL Based Bi-directional Long Short-Term Memory model (BiLSTM) is presented in this article. Pre-processing of data, interest classification, and parameter tweaking are all the essential operations of the proposed model. Initially, data augmentation is used to expand the dataset's size. Secondly, a BiLSTM model is used to predict and classify user interests. Adagrad optimizer is employed for hyperparameter optimization. In order to test the model's performance, a dataset is used and the results are analysed using precision, recall, accuracy and F-measure. The proposed model achieved 95% accuracy on 400th instances, where the existing techniques achieved 93.20% accuracy for the same. The proposed model achieved 95% of accuracy and precision for 60%-40% data, where the existing models achieved 93% for accuracy and precision.

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.

Modelling and Factor Analysis of Pricing Determinants in the State-Regulated Competitive Market: The Case of Ukrainian Flour Market

  • Dragan, Olena;Berher, Alina;Plets, Ivan;Biloshkurska, Nataliia;Lysenko, Nataliia;Bovkun, Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.211-220
    • /
    • 2021
  • The aim of the study is to implement a factor analysis of the determinants of pricing in a state-regulated competitive market using economic and mathematical modelling methods and to develop ways to improve the pricing environment of the market under study. The purpose of the work defines the main objectives: (i) to investigate the features of the competitive model of the Ukrainian flour market; (ii) to analyse the current price conjuncture of the flour market and the dynamics of the main determinants of pricing; (iii)to develop ways of improving the price situation on the flour market on the basis of the factor analysis on the results of economic and mathematical modelling. In order to ensure the reliability and validity of the research results, the following methods were applied: the logical-dialectical method of scientific knowledge in the study of the main theoretical aspects of flour market functioning, the method of logical generalisation and synthesis, comparison, factor analysis, correlation and regression analysis, the graphical method, etc. It has been shown that pricing in a state-regulated competitive market has its own characteristics. For example, in the flour market the price of goods cannot be influenced by producers (sellers) by any methods, therefore determinants of pricing by indirect influence have been taken into account. The five-factor power model of wheat flour price has been constructed. It was substantiated that the price of wheat flour in Ukraine is mostly influenced by consumer price index (0.92 %). The received complex model of wheat flour price may be used also for medium-term forecasting and working out the ways of price formation optimization in the flour market.

Optimization of the Number of Filter in CNN Noise Attenuator (CNN 잡음감쇠기에서 필터 수의 최적화)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • This paper studies the effect of the number of filters in the CNN (Convolutional Neural Network) layer on the performance of a noise attenuator. Speech is estimated from a noised speech signal using a 64-neuron, 16-kernel CNN filter and an error back-propagation algorithm. In this study, in order to verify the performance of the noise attenuator with respect to the number of filters, a program using Keras library was written and simulation was performed. As a result of simulation, it can be seen that this system has the smallest MSE (Mean Squared Error) and MAE (Mean Absolute Error) values when the number of filters is 16, and the performance is the lowest when there are 4 filters. And when there are more than 8 filters, it was shown that the MSE and MAE values do not differ significantly depending on the number of filters. From these results, it can be seen that about 8 or more filters must be used to express the characteristics of the speech signal.

Management of the Processes on the Quality Provision of the Logistic Activity in the Context of Socio-Economic Interaction of Their Participants

  • Savin, Stanislav;Kravchyk, Yurii;Dzhereliuk, Yuliia;Dyagileva, Olena;Naboka, Ruslan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.45-52
    • /
    • 2021
  • The article proves the relevance of developing conceptual frameworks for managing the quality assurance of logistics activities in the context of socio-economic interaction of their participants. It is established that the fundamental difference of the logistic approach in management from traditional approaches is the allocation of a single management function of previously separated, disparate material flows, as well as economic, technological, information integration of chain links into a single system capable of effective management of these flows. It is substantiated that the functioning of the enterprise as a logistics system can be represented in the form of a triad of logistics components, namely: supply logistics, production logistics, sales logistics. Management of quality assurance processes of logistics activities in the context of socio-economic interaction of their participants is a functional component of the entire logistics system due to the quality of work and interaction of all participants in the implementation of certain activities. The quality of logistics activities will affect the level of economic potential, rationalization and optimization of all logistics flows. It is proved that the management of quality assurance processes of logistics activities in the context of socio-economic interaction of their participants involves the following main areas: the introduction of a quality system of logistics processes; development and implementation of the general strategy of quality improvement at the enterprise; internal integration; controlling. Management of quality assurance processes of logistics activities in the context of socio-economic interaction of its participants requires compliance with the following requirements: systematic and comprehensive management of all flow processes; coordination of criteria and indicators for assessing the effectiveness of the entire logistics system; dissemination of the use and application of information technology; ensuring partnerships and close interaction of all participants in sales networks.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.