• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.032 seconds

Federated Deep Reinforcement Learning Based on Privacy Preserving for Industrial Internet of Things (산업용 사물 인터넷을 위한 프라이버시 보존 연합학습 기반 심층 강화학습 모델)

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1055-1065
    • /
    • 2023
  • Recently, various studies using deep reinforcement learning (deep RL) technology have been conducted to solve complex problems using big data collected at industrial internet of things. Deep RL uses reinforcement learning"s trial-and-error algorithms and cumulative compensation functions to generate and learn its own data and quickly explore neural network structures and parameter decisions. However, studies so far have shown that the larger the size of the learning data is, the higher are the memory usage and search time, and the lower is the accuracy. In this study, model-agnostic learning for efficient federated deep RL was utilized to solve privacy invasion by increasing robustness as 55.9% and achieve 97.8% accuracy, an improvement of 5.5% compared with the comparative optimization-based meta learning models, and to reduce the delay time by 28.9% on average.

Development of a Deep Learning-based Long-term PredictionGenerative Model of Wind and Sea Conditions for Offshore Wind Farm Maintenance Optimization (해상풍력단지 유지보수 최적화 활용을 위한 풍황 및 해황 장기예측 딥러닝 생성모델 개발)

  • Sang-Hoon Lee;Dae-Ho Kim;Hyuk-Jin Choi;Young-Jin Oh;Seong-Bin Mun
    • Journal of Wind Energy
    • /
    • v.13 no.2
    • /
    • pp.42-52
    • /
    • 2022
  • In this paper, we propose a time-series generation methodology using a generative adversarial network (GAN) for long-term prediction of wind and sea conditions, which are information necessary for operations and maintenance (O&M) planning and optimal plans for offshore wind farms. It is a "Conditional TimeGAN" that is able to control time-series data with monthly conditions while maintaining a time dependency between time-series. For the generated time-series data, the similarity of the statistical distribution by direction was confirmed through wave and wind rose diagram visualization. It was also found that the statistical distribution and feature correlation between the real data and the generated time-series data was similar through PCA, t-SNE, and heat map visualization algorithms. The proposed time-series generation methodology can be applied to monthly or annual marine weather prediction including probabilistic correlations between various features (wind speed, wind direction, wave height, wave direction, wave period and their time-series characteristics). It is expected that it will be able to provide an optimal plan for the maintenance and optimization of offshore wind farms based on more accurate long-term predictions of sea and wind conditions by using the proposed model.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

Analysis and Design Theory of Aperture-Coupled Cavity-Fed Back-to-Back Microstrip Directional Coupler (개구면 결합 공진기 급전 마이크로스트립 방향성결합기 해석 및 설계)

  • Nam, Sang-Ho;Jang, Guk-Hyun;Nam, Kyung-Min;Lee, Jang-Hwan;Kim, Chul-Un;Kim, Jeong-Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.7-17
    • /
    • 2007
  • An analysis and design theory of an aperture-coupled cavity-fed back-to-back microstrip directional coupler is presented for the efficient and optimized design. For this purpose, an equivalent network is developed, and simple but accurate calculations of circuit element values are described. Design equations of the coupler are derived based on the equivalent circuit. In order to determine various structural design parameters, the evolutionary hybrid optimization method based on the genetic algorithm and Nelder-Mead method is invoked. As a validation check of the proposed theory and optimized design method, a 10 dB directional coupler was designed and fabricated. The measured coupling was 10.3 dB at 3 GHz, and the return loss and isolation were 31.8 dB and 30.5 dB, respectively. The directional coupler also showed very good quadrature phase characteristics. Good agreements between the measured and the design specifications fully validate the proposed network analysis and design procedure.

High-Frequency Parameter Extraction of Insulating Transformer Using S-Parameter Measurement (S-파라메타를 이용한 절연 변압기의 고주파 파라메타 추출)

  • Kim, Sung-Jun;Ryu, Soo-Jung;Kim, Tae-Ho;Kim, Jong-Hyeon;Nah, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.259-268
    • /
    • 2014
  • In this paper, we suggest a method of extracting circuit parameters of the insulating transformer using S-parameter measurement, especially in high frequency range. At 60 Hz, conventionally, no load test and short circuit test are used to extract the circuit parameters. In this paper S-parameters measured from VNA(Vector Network Analyzer) were used to extract the transformer parameters using data fitting method (optimization). The S-parameters from the equivalent circuit using the extracted parameters showed good agreement with those from measurement. Furthermore, the transformer secondary voltages from the equivalent circuit model also coincide quite exactly to the measured secondary voltages in sinusoidal forms. Finally we assert that the proposed method to extract the parameters for the insulating transformer using S-parameter is valid especially in high frequency.

Comparison between Cournot-Nash and Stackelberg Game in Bi-level Program (Bi-level program에서 Cournot-Nash게임과 Stackelberg게임의 비교연구)

  • Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.99-106
    • /
    • 2004
  • This paper presents some comparisons between Cournot-Nash and Stackelberg game in bi-level program, composed of both upper level program and lower level one. The upper level can be formulated to optimize a specific objective function, while the lower formulated to express travelers' behavior patterns corresponding to the design parameter of upper level problem. This kind of hi-level program is to determine a design parameter, which leads the road network to an optimal state. Bi-level program includes traffic signal control, traffic information provision, congestion charge and new transportation mode introduction as well as road expansion. From the view point of game theory, many existing algorithms for bi-level program such as IOA (Iterative Optimization Assignment) or IEA (Iterative Estimation Assignment) belong to Cournot-Nash game. But sensitivity-based algorithms belongs to Stackelberg one because they consider the reaction of the lower level program. These two game models would be compared by using an example network and show some results that there is no superiority between the models in deterministic case, but in stochastic case Stackelberg approach is better than that of Cournot-Nash one as we expect.

Accuracy Improvement of Urban Runoff Model Linked with Optimal Simulation (최적모의기법과 연계한 도시유출모형의 정확도 개선)

  • Ha, Chang-Young;Kim, Byunghyun;Son, Ah-Long;Han, Kun-Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • The purpose of this study is to improve the accuracy of the urban runoff and drainage network analysis by using the observed water level in the drainage network. To do this, sensitivity analysis for major parameters of SWMM (Storm Water Management Model) was performed and parameters were calibrated. The sensitivity of the parameters was the order of the roughness of the conduit, the roughness of the impervious area, the width of the watershed, and the roughness of the pervious area. Six types of scenarios were set up according to the number and types of parameter considering four parameters with high sensitivity. These scenarios were applied to the Seocho-3/4/5, Yeoksam, and Nonhyun drainage basins, where the serious flood damage occurred due to the heavy rain on 21 July, 2013. Parameter optimization analysis based on PEST (Parameter ESTimation) model for each scenario was performed by comparing observed water level in the conduits. By analyzing the accuracy of each scenario, more improved simulation results could be obtained, that is, the maximum RMSE (Root Mean Square Error) could be reduced by 2.41cm and the maximum peak error by 13.7%. The results of this study will be helpful to analyze volume of the manhole surcharge and forecast the inundation area more accurately.

Optimal Design and Economic Evaluation of Energy Supply System from On/Off Shore Wind Farms (육/해상 풍력기반 에너지생산 공정 최적 설계 및 경제성 평가)

  • Kim, Minsoo;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • This paper presents a new framework for design and economic evaluation of wind energy-based electricity supply system. We propose a network optimization (mixed-integer linear programming) model to design the underlying energy supply system. In this model we include practical constraints such as land limitations of onshore wind farms and different costs of offshore wind farms to minimize the total annual cost. Based upon the model, we also analyze the sensitivity of the total annual cost on the change of key parameters such as available land for offshore wind farms, required area of a wind turbine and the unit price of wind turbines. We illustrate the applicability of the suggested model by applying to the problem of design of a wind turbines-based electricity supply problem in Jeju. As a result of this study, we identified the major cost-drivers and the regional cost distribution of the proposed system. We also comparatively analyzed the economic performance of on/off shore wind farms in wind energy-based electricity supply system of Jeju.

Identification of Japanese Black Cattle by the Faces for Precision Livestock Farming (흑소의 얼굴을 이용한 개체인식)

  • 김현태;지전선랑;서률귀구;이인복
    • Journal of Biosystems Engineering
    • /
    • v.29 no.4
    • /
    • pp.341-346
    • /
    • 2004
  • Recent livestock people concern not only increase of production, but also superior quality of animal-breeding environment. So far, the optimization of the breeding and air environment has been focused on the production increase. In the very near future, the optimization will be emphasized on the environment for the animal welfare and health. Especially, cattle farming demands the precision livestock farming and special attention has to be given to the management of feeding, animal health and fertility. The management of individual animal is the first step for precision livestock farming and animal welfare, and recognizing each individual is important for that. Though electronic identification of a cattle such as RFID(Radio Frequency Identification) has many advantages, RFID implementations practically involve several problems such as the reading speed and distance. In that sense, computer vision might be more effective than RFID for the identification of an individual animal. The researches on the identification of cattle via image processing were mostly performed with the cows having black-white patterns of the Holstein. But, the native Korean and Japanese cattle do not have any definite pattern on the body. The purpose of this research is to identify the Japanese black cattle that does not have a body pattern using computer vision technology and neural network algorithm. Twelve heads of Japanese black cattle have been tested to verify the proposed scheme. The values of input parameters were specified and then computed using the face images of cattle. The images of cattle faces were trained using associate neural network algorithm, and the algorithm was verified by the face images that were transformed using brightness, distortion, and noise factors. As a result, there was difference due to transform ratio of the brightness, distortion, and noise. And, the proposed algorithm could identify 100% in the range from -3 to +3 degrees of the brightness, from -2 to +4 degrees of the distortion, and from 0% to 60% of the noise transformed images. It is concluded that our system can not be applied in real time recognition of the moving cows, but can be used for the cattle being at a standstill.

Performance Reengineering of Embedded Real-Time Systems (내장형 실시간 시스템의 성능 개선을 위한 리엔지니어링 기법)

  • 홍성수
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.299-306
    • /
    • 2003
  • This paper formulates a problem of embedded real-time system re-engineering, and presents its solution approach. Embedded system re-engineering is defined as a development task of meeting performance requirements newly imposed on a system after its hardware and software have been fully implemented. The performance requirements nay include a real-time throughput and an input-to-output latency. The proposed solution approach is based on a bottleneck analysis and nonlinear optimization. The inputs to the approach include a system design specified with a process network and a set of task graphs, task allocation and scheduling, and a new real-time throughput requirement specified as a system's period constraint. The solution approach works in two steps. In the first step, it determines bottleneck precesses in the process network via estimation of process latencies. In the second step, it derives a system of constraints with performance scaling factors of processing elements being variables. It then solves the constraints for the performance staling factors with an objective of minimizing the total hardware cost of the resultant system. These scaling factors suggest the minimal cost hardware upgrade to meet the new performance requirement. Since this approach does not modify carefully designed software structures, it helps reduce the re-engineering cycle.