The objective of a neural network design and model selection is to construct an optimal network with a good generalization performance. However, training data include noises, and the number of training data is not sufficient, which results in the difference between the true probability distribution and the empirical one. The difference makes the teaming parameters to over-fit only to training data and to deviate from the true distribution of data, which is called the overfitting phenomenon. The overfilled neural network shows good approximations for the training data, but gives bad predictions to untrained new data. As the complexity of the neural network increases, this overfitting phenomenon also becomes more severe. In this paper, by taking statistical viewpoint, we proposed an integrative process for neural network design and model selection method in order to improve generalization performance. At first, by using the natural gradient learning with adaptive regularization, we try to obtain optimal parameters that are not overfilled to training data with fast convergence. By adopting the natural pruning to the obtained optimal parameters, we generate several candidates of network model with different sizes. Finally, we select an optimal model among candidate models based on the Bayesian Information Criteria. Through the computer simulation on benchmark problems, we confirm the generalization and structure optimization performance of the proposed integrative process of teaming and model selection.
The Transactions of the Korea Information Processing Society
/
v.5
no.10
/
pp.2627-2640
/
1998
In this paper, we analyze the performance of the virtual cell system[1] for the transmission of IP datagrams in mobile computer communications. A virtual cell consistsof a group of physical cells shose base stationsl are implemented b recote bridges and interconnected via high speed datagram packet switched networks. Host mobility is supported at the data link layer using the distributed hierachical location information of mobile hosts. Given mobility and communication ptems among physical cells, the problem of deploying virtual cells is equivalent to the optimization cost for the entire system where interclster communication is more expesive than intracluster communication[2]. Once an iptimal partitionof disjoint clusters is obtained, we deploy the virtual cell system according to the topology of the optimal partition such that each virtual cell correspods to a cluser. To analyze the performance of the virtual cell system, we adopt a BCMP open multipel class queueing network model. In addition to mobility and communication patterns, among physical cells, the topology of the virtual cell system is used to determine service transition probabilities of the queueing network model. With various system parameters, we conduct interesting sensitivity analyses to determine network design tradeoffs. The first application of the proposed model is to determine an adequate network bandwidth for base station networking such that the networks would not become an bottleneck. We also evaluate the network vlilization and system response time due to various types of messages. For instance, when the mobile hosts begin moving fast, the migration rate will be increased. This results of the performance analysis provide a good evidence in demonsratc the sysem effciency under different assumptions of mobility and communication patterns.
This study presents a concept of technology trade network and management, and proposes a procedural method for optimally selecting the technology transferor when a technology transferee needs to buy a specific technology. We develop a technology trade network where technology supplier, technology marketer, and technology transferee are informatively linked. And a technology trade management consists of three step of estimating technology, trading technology, and commercialization technology. Technology transferees could import the best appropriate technology which they want through these technology network method and cost optimization method. And we hope that these methodologies can be used in selecting new technology. A methodology can be classified into an estimating technology process and a choice of technology supplier process. In an estimating technology process, we calculate the technology similarity quantitatively through developing method of estimating technology which is focused on its technological characteristics. After defining the related cost of technology introduction, we suggest goal programming model to find a solution which can be acceptable both maximizing the technology similarity and minimizing the cost of technology. And suggested model is verified with a supplier selection problem of next generation tanks.
Currently, the prevalence of autism spectrum disorders in children is reported to be higher and shows various types of disorders. In particular, they are having difficulty in communication due to communication impairment in the area of social communication and need to be improved through training. Thus, this study proposes a method of acquiring voice information through a microphone mounted on a robot designed through preliminary research and using this information to make intelligent motions. An ANN(Artificial Neural Network) was used to classify the speech data into robot motions, and we tried to improve the accuracy by combining the Recurrent Neural Network based on Convolutional Neural Network. The preprocessing of input speech data was analyzed using MFCC(Mel-Frequency Cepstral Coefficient), and the motion of the robot was estimated using various data normalization and neural network optimization techniques. In addition, the designed ANN showed a high accuracy by conducting an experiment comparing the accuracy with the existing architecture and the method of human intervention. In order to design robot motions with higher accuracy in the future and to apply them in the treatment and education environment of children with autism.
Some previous studies adopted a method statistically based on the observed traffic volumes and travel times to estimate the parameters. Others tried to find an optimal set of parameters to minimize the gap between the observed and estimated traffic volumes using, for instance, a combined optimization model with a traffic assignment model. The latter is frequently used in a large-scale network that has a capability to find a set of optimal parameter values, but its appropriateness has never been demonstrated. Thus, we developed a methodology to estimate a set of parameter values of BPR(Bureau of Public Road) function using Harmony Search (HS) method. HS was developed in early 2000, and is a global search method proven to be superior to other global search methods (e.g. Genetic Algorithm or Tabu search). However, it has rarely been adopted in transportation research arena yet. The HS based transportation network calibration algorithm developed in this study is tested using a grid network, and its outcomes are compared to those from incremental method (Incre) and Golden Section (GS) method. It is found that the HS algorithm outperforms Incre and GS for copying the given observed link traffic counts, and it is also pointed out that the popular optimal network calibration techniques based on an objective function of traffic volume replication are lacking the capability to find appropriate free flow travel speed and ${\alpha}$ value.
This paper presents a systematic approach which determines the optimal period to minimize performance measure subject to the schedulability constraints of a real-time control system by formulating the scheduling problem as an optimal problem. The performance measure is derived from the summation of end-to-end response times of processed I/Os scheduled by the static cyclic method. The schedulability constraint is specified in terms of allowable resource utilization. At first, a uniprocessor case is considered and then it is extended to a distributed system connected through a communication link, local-inter network, UN. This approach is applied to the design of an automotive body control system in order to validate the feasibility through a real example. By using the approach, a set of optimal periods can easily be obtained without complex and advanced methods such as branch and bound (B&B) or simulated annealing.
Recently, the distributed processing system for big data has been actively investigated owing to the development of high speed network and storage technologies. In addition, virtual system that can provide efficient use of system resources through the consolidation of servers has been increasingly recognized. But, when we configure distributed processing system for big data in virtual machine environments, many problems occur. In this paper, we did an experiment on the optimization of I/O bandwidth according to the creation and placement of VMs and tasks with composing Hadoop cluster in virtual environments and evaluated the results of an experiment. These results conducted by this paper will be used in the study on the development of Hadoop Scheduler supporting I/O bandwidth balancing in virtual environments.
This paper proposes a management system for the educational program of production managers on the basis of value co-creation by the learner and the instructor. The program combines an intelligent knowledge-based approach with the kaizen activity program. The program helps individuals acquire knowledge and skills to ensure the total rather than the partial optimization of processes and operations facilitating continuous improvement in the workplace. To achieve these goals, the program uses models of a learning process and a swing of enlightenment. In addition, the program is supported by a framework of academic, business people, consultants, and government officers. The program was developed using an instructional design approach. This paper discusses the process of developing and managing the educational program between 2006 and 2012 as well as the results obtained.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.3
/
pp.735-748
/
2014
The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.
Many algorithms to find a minimum cost design of water distribution network (WDN) have been developed during the last decades. Most of them have tried to optimize cost only while satisfying other constraining conditions. For this, a certain degree of simplification is required in their calculation process which inevitably limits the real application of the algorithms, especially, to large networks. In this paper, an optimum design method using the Genetic Algorithms (GA) is developed which is designed to increase the applicability, especially for the real world large WDN. The increased to applicability is due to the inherent characteristics of GA consisting of selection, reproduction, crossover and mutation. Just for illustration, the GA method is applied to find an optimal solution of the New York City water supply tunnel. For the calculation, the parameter of population size and generation number is fixed to 100 and the probability of crossover is 0.7, the probability of mutation is 0.01. The yielded optimal design is found to be superior to the least cost design obtained from the Linear Program method by $4.276 million.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.