• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.022 seconds

Fast Channel Allocation for Ultra-dense D2D-enabled Cellular Network with Interference Constraint in Underlaying Mode

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2240-2254
    • /
    • 2021
  • We investigate the channel allocation problem in an ultra-dense device-to-device (D2D) enabled cellular network in underlaying mode where multiple D2D users are forced to share the same channel. Two kinds of low complexity solutions, which just require partial channel state information (CSI) exchange, are devised to resolve the combinatorial optimization problem with the quality of service (QoS) guaranteeing. We begin by sorting the cellular users equipment (CUEs) links in sequence in a matric of interference tolerance for ensuring the SINR requirement. Moreover, the interference quota of CUEs is regarded as one kind of communication resource. Multiple D2D candidates compete for the interference quota to establish spectrum sharing links. Then base station calculates the occupation of interference quota by D2D users with partial CSI such as the interference channel gain of D2D users and the channel gain of D2D themselves, and carries out the channel allocation by setting different access priorities distribution. In this paper, we proposed two novel fast matching algorithms utilize partial information rather than global CSI exchanging, which reduce the computation complexity. Numerical results reveal that, our proposed algorithms achieve outstanding performance than the contrast algorithms including Hungarian algorithm in terms of throughput, fairness and access rate. Specifically, the performance of our proposed channel allocation algorithm is more superior in ultra-dense D2D scenarios.

Mobile Sink Path Planning in Heterogeneous IoT Sensors: a Salp Swarm Algorithm Scheme

  • Hamidouche, Ranida;Aliouat, Zibouda;Ari, Ado Adamou Abba;Gueroui, Abdelhak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2225-2239
    • /
    • 2021
  • To assist in data collection, the use of a mobile sink has been widely suggested in the literature. Due to the limited sensor node's storage capacity, this manner to collect data induces huge latencies and drop packets. Their buffers will be overloaded and lead to network congestion. Recently, a new bio-inspired optimization algorithm appeared. Researchers were inspired by the swarming mechanism of salps and thus creating what is called the Salp Swarm Algorithm (SSA). This paper improves the sink mobility to enhance energy dissipation, throughput, and convergence speed by imitating the salp's movement. The new approach, named the Mobile Sink based on Modified Salp Swarm Algorithm (MSSA), is approved in a heterogeneous Wireless Sensor Network (WSN) data collection. The performance of the MSSA protocol is assessed using several iterations. Results demonstrate that our proposal surpass other literature algorithms in terms of lifespan and throughput.

Applications of Intelligent Radio Technologies in Unlicensed Cellular Networks - A Survey

  • Huang, Yi-Feng;Chen, Hsiao-Hwa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2668-2717
    • /
    • 2021
  • Demands for high-speed wireless data services grow rapidly. It is a big challenge to increasing the network capacity operating on licensed spectrum resources. Unlicensed spectrum cellular networks have been proposed as a solution in response to severe spectrum shortage. Licensed Assisted Access (LAA) was standardized by 3GPP, aiming to deliver data services through unlicensed 5 GHz spectrum. Furthermore, the 3GPP proposed 5G New Radio-Unlicensed (NR-U) study item. On the other hand, artificial intelligence (AI) has attracted enormous attention to implement 5G and beyond systems, which is known as Intelligent Radio (IR). To tackle the challenges of unlicensed spectrum networks in 4G/5G/B5G systems, a lot of works have been done, focusing on using Machine Learning (ML) to support resource allocation in LTE-LAA/NR-U and Wi-Fi coexistence environments. Generally speaking, ML techniques are used in IR based on statistical models established for solving specific optimization problems. In this paper, we aim to conduct a comprehensive survey on the recent research efforts related to unlicensed cellular networks and IR technologies, which work jointly to implement 5G and beyond wireless networks. Furthermore, we introduce a positioning assisted LTE-LAA system based on the difference in received signal strength (DRSS) to allocate resources among UEs. We will also discuss some open issues and challenges for future research on the IR applications in unlicensed cellular networks.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

Simulation of Dynamic Characteristics of a Trigenerative Climate Control System Based On Peltier Thermoelectric Modules

  • Vasilyev, G.S.;Kuzichkin, O.R.;Surzhik, D.I.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.252-257
    • /
    • 2021
  • The application of the principle of trigeneration allows to simultaneously provide electricity to power electronic devices, as well as heat and cold to create the necessary microclimate of the premises and increase efficiency compared to separate cooling and heating systems. The use of Peltier thermoelectric modules (TEM) as part of trigenerative systems allows for smooth and precise control of the temperature regime, high manufacturability and reliability due to the absence of moving parts, resistance to shock and vibration, and small weight and size parameters of the system. One of the promising areas of improvement of trigenerative systems is their modeling and optimization based on the automatic control theory. A block diagram and functional model of an energy-saving trigenerative climate control system based on Peltier modules are developed, and the transfer functions of an open and closed system are obtained. The simulation of the transient characteristics of the system with varying parameters of the components is performed. The directions for improving the quality of transients in the climate control system are determined, as well as the prospects of the proposed methodology for modeling and analyzing control systems operating in substantially nonlinear modes.

A Review on the CPU Scheduling Algorithms: Comparative Study

  • Ali, Shahad M.;Alshahrani, Razan F.;Hadadi, Amjad H.;Alghamdi, Tahany A.;Almuhsin, Fatimah H.;El-Sharawy, Enas E.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • CPU is considered the main and most important resource in the computer system. The CPU scheduling is defined as a procedure that determines which process will enter the CPU to be executed, and another process will be waiting for its turn to be performed. CPU management scheduling algorithms are the major service in the operating systems that fulfill the maximum utilization of the CPU. This article aims to review the studies on the CPU scheduling algorithms towards comparing which is the best algorithm. After we conducted a review of the Round Robin, Shortest Job First, First Come First Served, and Priority algorithms, we found that several researchers have suggested various ways to improve CPU optimization criteria through different algorithms to improve the waiting time, response time, and turnaround time but there is no algorithm is better in all criteria.

Load Balancing Approach to Enhance the Performance in Cloud Computing

  • Rassan, Iehab AL;Alarif, Noof
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.158-170
    • /
    • 2021
  • Virtualization technologies are being adopted and broadly utilized in many fields and at different levels. In cloud computing, achieving load balancing across large distributed virtual machines is considered a complex optimization problem with an essential importance in cloud computing systems and data centers as the overloading or underloading of tasks on VMs may cause multiple issues in the cloud system like longer execution time, machine failure, high power consumption, etc. Therefore, load balancing mechanism is an important aspect in cloud computing that assist in overcoming different performance issues. In this research, we propose a new approach that combines the advantages of different task allocation algorithms like Round robin algorithm, and Random allocation with different threshold techniques like the VM utilization and the number of allocation counts using least connection mechanism. We performed extensive simulations and experiments that augment different scheduling policies to overcome the resource utilization problem without compromising other performance measures like makespan and execution time of the tasks. The proposed system provided better results compared to the original round robin as it takes into consideration the dynamic state of the system.

Encryption-based Image Steganography Technique for Secure Medical Image Transmission During the COVID-19 Pandemic

  • Alkhliwi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.83-93
    • /
    • 2021
  • COVID-19 poses a major risk to global health, highlighting the importance of faster and proper diagnosis. To handle the rise in the number of patients and eliminate redundant tests, healthcare information exchange and medical data are transmitted between healthcare centres. Medical data sharing helps speed up patient treatment; consequently, exchanging healthcare data is the requirement of the present era. Since healthcare professionals share data through the internet, security remains a critical challenge, which needs to be addressed. During the COVID-19 pandemic, computed tomography (CT) and X-ray images play a vital part in the diagnosis process, constituting information that needs to be shared among hospitals. Encryption and image steganography techniques can be employed to achieve secure data transmission of COVID-19 images. This study presents a new encryption with the image steganography model for secure data transmission (EIS-SDT) for COVID-19 diagnosis. The EIS-SDT model uses a multilevel discrete wavelet transform for image decomposition and Manta Ray Foraging Optimization algorithm for optimal pixel selection. The EIS-SDT method uses a double logistic chaotic map (DLCM) is employed for secret image encryption. The application of the DLCM-based encryption procedure provides an additional level of security to the image steganography technique. An extensive simulation results analysis ensures the effective performance of the EIS-SDT model and the results are investigated under several evaluation parameters. The outcome indicates that the EIS-SDT model has outperformed the existing methods considerably.

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

Novel Image Classification Method Based on Few-Shot Learning in Monkey Species

  • Wang, Guangxing;Lee, Kwang-Chan;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.79-83
    • /
    • 2021
  • This paper proposes a novel image classification method based on few-shot learning, which is mainly used to solve model overfitting and non-convergence in image classification tasks of small datasets and improve the accuracy of classification. This method uses model structure optimization to extend the basic convolutional neural network (CNN) model and extracts more image features by adding convolutional layers, thereby improving the classification accuracy. We incorporated certain measures to improve the performance of the model. First, we used general methods such as setting a lower learning rate and shuffling to promote the rapid convergence of the model. Second, we used the data expansion technology to preprocess small datasets to increase the number of training data sets and suppress over-fitting. We applied the model to 10 monkey species and achieved outstanding performances. Experiments indicated that our proposed method achieved an accuracy of 87.92%, which is 26.1% higher than that of the traditional CNN method and 1.1% higher than that of the deep convolutional neural network ResNet50.