In the preliminary design stage of an RC 3D-frame, repeated sequential analyses to determine optimal members' sizes and the investigation of the parameters required to minimize the differential column shortening are computational effort consuming, especially when considering various types of loads such as dead load, temperature action, time dependent effects, construction and live loads. Because the desired accuracy at this stage does not justify such luxury, two backpropagation feedforward artificial neural networks have been proposed in order to approximate this information. Instead of using a commercial software package, many references providing advanced principles have been considered to code a program and generate these neural networks. The first one predicts the typical amount of time between two phases, needed to achieve the minimum maximorum differential column shortening. The other network aims to prognosticate sequential analysis results from those of the simultaneous analysis. After the training stages, testing procedures have been carried out in order to ensure the generalization ability of these respective systems. Numerical cases are studied in order to find out how good these ANN match with the sequential finite element analysis. Comparison reveals an acceptable fit, enabling these systems to be safely used in the preliminary design stage.
Proceedings of the Korea Contents Association Conference
/
2007.11a
/
pp.547-549
/
2007
Recently with increasing the use of parallel computing and cluster system which was connected high speed network, the interest about distributed and parallel file system is increasing. Specially, there are many researches, which focused on optimizing the performance of distributed and parallel file system for the more efficient use of cluster system. In this paper, we analyzed the performance of PVFS(Parallel Virtual File System) in small cluster system. In addition, to improve the PVFS performance we proposed the chancing the size of flow buffer according to the network speed and we optimized the PVFS performance on small cluster system.
Networks-on-Chip (NoC) is emerging as a practical development platform for future systems-on-chip products. We propose an energy-efficient static algorithm which optimizes the energy consumption of task communications in NoCs with voltage scalable links. In order to find optimal link speeds, the proposed algorithm (based on a genetic formulation) globally explores the design space of NoC-based systems, including network topology, task assignment, tile mapping, routing path allocation, task scheduling and link speed assignment. Experimental results show that the proposed design technique can reduce energy consumption by 28% on average compared with existing techniques.
Kim, Hoon;Jeon, Young-Jae;Kim, Jae-Chul;Choi, Do-Hyuk;Chung, Yong-Chul;Choo, Dong-Wook
Proceedings of the KIEE Conference
/
2000.07a
/
pp.537-540
/
2000
The Distribution System consist of many tie-line switches and sectionalizing switches, operated a radial type. When an outage occurs in Distribution System, outage areas are isolated by system switches, has to restored as soon as possible. At this time, system operator have to get a information about network topology for service restoration of outage areas. Therefore, the searching result of restorative topology has to fast computation time and reliable result topology for to restore a electric service to outage areas, equal to optimal switching operation problem. So, the problem can be defined as combinatorial optimization problem. The service restoration problem is so important problem which have outage area minimization, outage loss minimization. Many researcher is applying to the service restoration problem with various techniques. In this paper, advanced Dijkstra algorithm is applied to searching a restoration topology, is so efficient to searching a shortest path in graph type network. Additionally, fuzzy rules and operator are applied to overcome a fuzziness of correlation with input data. The present technique has superior results which are fast computation time and searching results than previous researches, demonstrated by example distribution model system which has 3 feeders, 26 buses. For a application capability to real distribution system, additionally demonstrated by real distribution system of KEPCO(Korea Electric Power Corporation) which has 8 feeders and 140 buses.
Kim, Hae-Jung;Ji, Kyoung-Bok;Kim, Chang-Hwa;Kim, Sang-Kyung;Park, Chan-Jung
Proceedings of the Korean Information Science Society Conference
/
2007.10d
/
pp.215-220
/
2007
최근 센서 네트워크에서 에너지 효율성을 위한 다양한 연구가 진행 중이다. 특히 센서 노드의 저전력을 위해서는 센서 네트워크에서 전송되는 데이터의 횟수나 전송량을 최소한으로 줄이면서 효율적이면서 신뢰성을 가지는 질의에 대한 결과를 얻을 수 있어야 한다. 본 연구에서는 해양 센서 네트워크 상에서 데이터의 전송량을 줄일 수 있는 SDMTree(Sensing Data Management Tree)를 제안한다. 제안된 SDMTree는 질의 최적화를 위해 질의 처리기 구성 요소로 도입 가능하다. 해양 센서 네트워크에서 in-network 각 4레벨에서 하위 노드로부터 받은 데이터를 병합, 관리하기 위한 방법으로 데이터를 속성별로 구분하여 중복된 데이터를 제거하여 트리형태로 구성되기 때문에 질의에 대한 응답에 해당하는 데이터 검색시 정확하고 신속하게 처리할 수 있으며, 트리 구성 또한 중복 데이터 및 중복 영역을 배제하여 구성되므로, 상위노드가 하위 노드로부터 센싱 데이터를 수집하여 저장하기 위한 에너지와 상위 노드에서 하위 노드로 질의를 전송시 질의에 해당하는 특정 영역에만 질의를 전송할 수 있기 때문에 데이터 저장 및 통신에 소모되는 불필요한 에너지를 최대한 줄일 수 있다.
Liu, Wenxin;Sarangapani, Jagannathan;Venayagamoorthy, Ganesh K.;Liu, Li;Wunsch II, Donald C.;Crow, Mariesa L.;Cartes, David A.
International Journal of Control, Automation, and Systems
/
v.5
no.5
/
pp.526-538
/
2007
This paper presents a neural network based decentralized excitation controller design for large-scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem control activities are guaranteed through rigorous stability analysis. Neural networks in the controller design are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded. To evaluate its performance, the proposed controller design is compared with conventional controllers optimized using particle swarm optimization. Simulations with a three-machine power system under different disturbances demonstrate the effectiveness of the proposed controller design.
Journal of the Korean Institute of Telematics and Electronics C
/
v.36C
no.10
/
pp.66-74
/
1999
In this paper, we propose a generalized model of statistical Hopfield neural network applicable to solving the well known NP-Complete problem, TSP. Van Den Bout's method to simplify the energy function through normalization has severe weak points that it does not consider the necessary perturbation effects. In proposed model, the improved energy function is used and 5 kinds of perturbation effects and the ratio between perturbation effects are considered including van Den Bout's 2 kinds and one more kind of Park. Through the simulation of randomly generated distribution of 10-city, it is found that our model shows 90 out of 100 cases reach the optimum and near optimum solution(within 5% error). We show the simulation of the large scale, 30-city and 50-city.
Purpose: The objective of this study is to develop a predictive model for calculating the amount of cooling load for the different setback temperatures during the setback period. An artificial neural network (ANN) is applied as a predictive model. The predictive model is designed to be employed in the control algorithm, in which the amount of cooling load for the different setback temperature is compared and works as a determinant for finding the most energy-efficient optimal setback temperature. Method: Three major steps were conducted for proposing the ANN-based predictive model - i) initial model development, ii) model optimization, and iii) performance evaluation. Result:The proposed model proved its prediction accuracy with the lower coefficient of variation of the root mean square errors (CVRMSEs) of the simulated results (Mi) and the predicted results (Si) under generally accepted levels. In conclusion, the ANN model presented its applicability to the thermal control algorithm for setting up the most energy-efficient setback temperature.
The platform and floating structure of spar type offshore wind turbine systems should be designed in order for the 6-DOF motions to be minimized, considering diverse loading environments such as the ocean wave, wind, and current conditions. The objective of this study is to optimally design the platform and substructure of a 3MW spar type wind turbine system with the maximum postural stability in 6-DOF motions as well as the minimum material cost. Therefore, design variables of the platform and substructure were first determined and then optimized by a hydrodynamic analysis. For the hydrodynamic analysis, the body weight of the system was considered, and the ocean wave conditions were quantified to the wave forces using the Morison's equation. Moreover, the minimal number of computation analysis models was generated by the Design of Experiments (DOE), and the design variables of the platform and substructure were finally optimized by using a genetic algorithm with a neural network approximation.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.6
/
pp.31-39
/
2011
For rapid formed the ad hoc wireless backbone network in disaster scene, It is necessary for real-time deployment scheme of wireless ad hoc relay devices by first responders without pre-planning. However, in order to realize this scheme, redundant deployment should be minimized, as well as optimal location of relay devices should be selected to expand communication coverage. Therefore, in this paper, we propose a new deployment scheme of relay devices to optimize communication coverage and then through simulations showed that improved performance of algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.