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Decentralized Neural Network-based Excitation Control
of Large-scale Power Systems

Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Li Liu,
Donald C. Wunsch II, Mariesa L. Crow, and David A. Cartes

Abstract: This paper presents a neural network based decentralized excitation controller design
for large-scale power systems. The proposed controller design considers not only the dynamics of
generators but also the algebraic constraints of the power flow equations. The control signals are
calculated using only local signals. The transient stability and the coordination of the subsystem
control activities are guaranteed through rigorous stability analysis. Neural networks in the
controller design are used to approximate the unknown/imprecise dynamics of the local power
system and the interconnections. All signals in the closed loop system are guaranteed to bz
uniformly ultimately bounded. To evaluate its performance, the proposed controller design is
compared with conventional controllers optimized using particle swarm optimization.
Simulations with a three-machine power system under different disturbances demonstrate the

effectiveness of the proposed controller design.
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1. INTRODUCTION

Power systems are large-scale, distributed and
highly nonlinear with fast transients. To coordinate the
control activities of the overall system, centralized
control schemes are proposed by assuming that global
information of the entire system is available. However,
centralized controllers are very difficult to design and
implement for complex large-scale systems due to
technical and economic reasons. Furthermore,
centralized controller designs are dependent upon the
system structure and cannot handle the structural
changes.

Decentralized control schemes are proposed to
overcome these problems of centralized control.
Instead of designing a global central controller,
decentralized controller design aims at designing
separate local controllers for each subsystem. The
subsystem controllers require only local signals and/or
a minimum amount of information from other
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subsystems.

Traditionally, the decentralized control strategies of
power systems were designed based on linearized
system models at certain operating points. The
selection of operating points and tuning of parameters
are quite empirical. Moreover, the performance of
these controllers cannot be guaranteed under certain
unforeseen large disturbances.

With the introduction of differential geometric
methods, various stabilizing control results are
reported based on nonlinear multimachine power
system models [1,2]. However, differential geometric
based nonlinear controller designs require exact
knowledge of system dynamics. Imprecise knowledge
will degrade the performance of the controller designs.
Since it is impossible to make the assumption that the
complex power system dynamics can bes known
accurately, these controller designs cannot be widely
accepted.

In order to overcome the limitation of the methods
mentioned above, and to enhance the robustness of the
power system, numerous results on the decentralized
nonlinear robust control of power systems have
appeared [3-10]. Some model uncertainties are
considered, even though most of the controller
designs are still based on the differential gecmetric or
backstepping methodologies. In all these papers, the
stability and robustness of the control sysiem were
demonstrated using Lyapunov analysis.

Neural networks have been proven an excellent tool
for function approximation and therefore they are
used to approximate nonlinear systems. Recently,
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Neural Networks (NN) were applied to the design of
decentralized controllers [11,12]. In these papers, NNs
are used to approximate the unknown nonlinear
dynamics of the subsystems and to compensate the
unknown nonlinear interactions. Though local
measured information is used in the controller design
of subsystems, the coordination of subsystem
controllers and the transient performance can be
guaranteed. These designs are applicable to a limited
class of nonlinear systems. In [13], a decentralized
neural network control scheme was proposed for a
class of nonlinear systems that does not satisfy the
matching conditions.

The proposed work extends the authors’ previous
work on indirect [14,15] and direct [16-18] NN-based
power systems controls to the decentralized control of
large-scale power systems described by Differential
Algebraic Equations (DAE). In the DAE model, the
differential equations are used to model the dynamics
of the generators, and the algebraic equations are used
to model the power flow constraints. Before the
controller design, the algebraic equations are first
transformed into differential equations based on

circuit theory. After that, bounds of the
interconnection terms are analyzed for the
transformed model.  Subsequently, = NN-based

decentralized controller design is presented. It can be
concluded that all the signals in the closed loop are
uniformly ultimately bounded.

To evaluate its performance, the proposed
controller design is compared with conventional
excitation controls including an Automatic Voltage
Regulator (AVR) and a Conventional Power System
Stabilizer (CPSS). It is well known that it is a difficult
job to tune the design parameters of the conventional
controls especially for large-scale power systems.
Particle Swarm Optimization (PSO) is applied to
optimize the parameters tuning process. The proposed
controller design is then compared with the best
possible performance of the conventional controllers.
Simulations with the WECC 3-machine 9-bus power
system demonstrate the effectiveness of the proposed
controller design.

The rest of the paper is organized as follows.
Section 2 briefly introduces the approximation
property of NN and stability of nonlinear system.
Section 3 presents the model transformation, and
bound analysis. The decentralized neural network
controller design is presented in Section 4. Simulation
results are provided in Section 5, and finally,
conclusion is given in Section 6.

2. BACKGROUND

The following mathematical notions are required
for system approximation using NNs and stability
analysis for the design of an adaptive NN controller.

2.1. Approximation property of NN

The commonly used property of NN for control is
its function approximation and adaptation capability
[19]. Let f{x) be a smooth function from R"—R", then
it can be shown that, as long as x is restricted to a

compact set SeR”, for some sufficiently large

number of hidden-layer neurons, there exist a set of
weights and thresholds such that

f(x) =W p(x) + £(x), (1)

where x is the input vector, ¢(.) is the activation
function, W is the weight matrix of the output layer,
and &(x) is the approximation error. Equation (1)
indicates that a NN can approximate any continuous
function in a compact set. In fact, for any choice of a
positive number ey, one can find a NN such that
e(x)<gy for all xeS. For suitable function

approximation, ¢(x) must form a basis [20].

For a two layer NN, ¢(x) is defined as p(x)=o(V'x),
where V is the weight matrix of the first layer, and
o(x) is the sigmoid function. If V is fixed, then the
only design parameter in the NN is /' matrix, and this
NN becomes a simplified version of function link
network (one layer NN), which is easier to train. It has
been shown in [21] that ¢(x) can form a basis if V is
chosen randomly. The larger the number of the hidden
layer neurons N, is, the smaller is the approximation
error &(x). Baron shows that the NN approximation
error &(x) for one layer NN is fundamentally bounded
by a term of the order (1/n)*" “ where n is the number
of fixed basis functions, and d is the dimension of the
input to the NN [19].

2.2. Stability of systems
Consider the nonlinear system given by

x= f(x’u)a

2
y = h(x), @

where x(7) is a state vector, u(f) is the input vector, and
y(®) is the output vector [22]. The solution to (2) is
uniformly ultimately bounded (UUB) if for any U, a
compact subset of R,, and all x(#y)=x, €U there
exists an £>0, and a number 7(g,x,) such that ||x(f)||<e
for all £ ¢5+T.

3. POWER SYSTEM MODEL
TRANSFORMATION AND BOUND
ANALYSIS

Large-scale power systems can be represented
using Differential Algebraic Equations (DAE) [23].
The differential and algebraic equations represent the
generator dynamics, and power flow constraints,
respectively.
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ds,
a
2H: dw; ' '
w—l7tl—:Tmi —Eqi[qi _(Xqi _Xdi)ldilqi (3)
s
dE,

TdOl d;ﬂ =—E,; —(Xg—Xg)lg + E gy
and

=p" VZV ;cos(6, —0; — @)
Jj=1

N @
0= Ql.i"j Z V;Y;sin(6, -6, - ¢;),
j=1
where /; and [, satisfy the following equations.
Visin(6; = 6,)— Xyl ,; =0
. : ®)
Vicos(6; —6) + Xyl gy —E,; =0

In (3)-(5), i=1,2,...

subsystems; N is the number of the buses; J;

,n; 1 is the number of generators/
is the

power angle of the i" generator in rad; w; is the

rotating speed of the i" generator in rad/s; o, is the
synchronous machine rotating speed in rad/s; H,; is

the inertia constant in seconds; 7, is the

mi

mechanical input power in p.u.; E,; is the g-axis

qi
internal transient electric potential of the i generator
P™ and

in p.u.; ’

inh
i

E 4 is the control signal in p.u.;

are the injected active and reactive power at bus
V,£8; is the voltage at bus i; and Y;Z¢;

is admittance between bus i and bus ;.

The difficulty encountered during the controller
design for the above DAE based model is the
manipulation of algebraic constraints. According to
(5), we can see that I; and I in (3) are functions of
local measured variables &; andV;£6;. Since V,Z6;

is subjected to algebraic equation constraints (4), I
and I,; can be expressed as a function of the states of
the differential equations only. This procedure is
discussed next.

According to circuit theory, the voltages and
injected currents at the generator buses satisfy the
following equation:

iinpu;

V=2, 6)

7=, 7,1 and T=[L,.I,J'

Zy,s =R+ jX is a nxn matrix of

where are all
nx1 vectors,

the equivalent impedance of the network.

Synchronous Generator #i

V;£0;
-2 -
Ug+ilpye 2 Xa Ry |

@D
Vg +iVi)e 2

. N O
[(Xqi_Xdi)Iqi+]Eqi]e 2

Fig. 1. Dynamic circuit of the synchronous gznerator.

The dynamic circuit of the synchronous generator
can be represented by the following figure [23].
According to Fig. 1, we have

_ )
1=y +jlq).e 2 (7)
and
V=[(X,1,~Rsl,)
e J(6-5) ®
+](Eq—Xd.1d_Rs.1q)].e 2 5
where Iy =[lg,.dg, 1, 1, =0y, d,Y, 8=[4,

T T ' ' Y
...5’1] , —[qu, ] 5 Xd :[Xdl"”an] ’
T T
E, =[Eq1,... qn] , and R =[Ry,...Ry,]
nx1 vectors, “.” denotes “dot multiplication”.
Since R, elements are usually very small, R

can be assumed as a null vector. Substituting (7) and
(8) into (5), one can get

are all

X1 +JE - XyI,)€ o=

. J(E,-X,.1,]e

q9q q d-d ©)
0-2)

=(R+ XU, + I, )e 2]

That is

Xy dgsiné+(E, — Xy.05).cos6
=R(I,;.sind +1,.co85) — X(I,.sinb — 1;.c0s 5)
(E, - X414)siné— X, .I,.cosS
= R(Iq.siné'vld.cosé')+X(Id.sin5+Iq.cos§).
(10)

Considering the i" elements of the above equations,
we get

[R-sin§-+(A,-j+

. Xj;)eosd 1
Eq,- €oso; = Z{+[ (B

Xj)sind; + Rycosd; 1,
, n (A4 + X )sm5 R coso; ]I
Eqisil’lé}:z lJ dj R
o [ Ry sind; +(By + Xij)eosd; |,
an



Decentralized Neural Network-based Excitation Control of Large-scale Power Systems 529

where R; and Xj; are the i, Jj-th element of matrix
R and X respectively, and A4 and Bare defined
according to A=diag[X,'11,...,X;1n] and B=diag
[Xg15es Xgn ]

Equation (11) can be expressed using the following
equation

Y = MX, (12)

where vectors X, Y and matrix M are defined as
follows:

T
X:[Idl’]ql""’Idi’Iqi""’ldn’lqn] N
YZ[E‘;] COS5I,E;]1 Sil’lé‘l,

...,E,'I,- €os 6,~,E'q,- sin 6,-,...,E,']n €os 6,,,E;],, sin 5n]T ,
(o By o ay Bu v @, B
4 oen 0 b wi o P P
M= ay Py oo Pu o %y P
b 01 v B P v P P
(2] ﬂnl e Gy ﬂm’ o Uy, ﬂnn
(P P Pui Pui Pon Pan |

(13)

The variables in M are defined according to

a; = My 151 = Rysind; +(4; + Xj;)cosd),

ﬂl] = MZi—l,Zj = _(Bl] + XU)Sin5j + le COSé‘j, (14)

¢I.j = M2i,2j—l = (A,-j + X,-j)siné'j ﬂRij cos5j,

During the operation range of a power system, M
should always be a full rank matrix. This is proved
later during our simulation under different operating

conditions. Thus the inverse matrix of M exist, and

I and 1, can be expressed as linear combinations

of E;ZI' with the parameters ¢; (6) and (//ij(é—' )
defined as linear combinations of the sind; and

cosd; together with the parameters of the power
systems.

1y =Z¢U(S)Eq,
- (15)
qu = Zl/llj(é_)E' X
j=1

where 8 =[4},...,5, T* denote all the rotor angles.

Since the linear combination of bounded variables
are always bounded, the bound of /, and I, canbe

expressed as in (16).

|1di|siq>y.‘E;U|
- (16)
llqi|§Z‘;‘{/y1E;”‘,
]:

where constants dD,-j and ‘I’ij are the bounds of
;; (6) and y;(5) respectively. Note that we do not
need to calculate the value of CDIJ- and ‘Pij in our

calculation of control signals. We only use these
expressions to analyze the bounds of the
interconnection terms.

To simplify the controller design, the third system

state E;I is substituted using a measurable variable P,; ,

and it is defined as
B =E il +(X, _X;ﬁ)ldilqi' a7
Thus the system dynamics can be transformed into

6 = w; — ay,

.o @
o =571 % p. 18
“2H, ™ 2H, (18)
. 1 1
B =———PF,; +——v; +4;(),

Th0i d0i

where the virtual control signal for the transformed
system is defined as

In (19), v, is the reference value ofv;, and Av;is

A;(.)y is called the
interconnection term and defined as [24]

the deviation of v; from vy .

A ()= (X — XM gilgi + Eqijqi 20)
+(Xy - X;’i)(jdilqi + Idijqi)'

According to (19), we can calculate E g, as long

as1,; is not zero. The term |A;()] can be expressed

as a sum of subsystem states since our controller
design requires the bound on the interconnection
terms. Consequently, the following assumption can be
applied to obtain these bounds.

Assumption 1: The excitation voltage E ;; can be

at most & times as large as E; = E"ﬁ +(Xy —X;ﬁ)[di [5]
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The above assumption is very important to obtain
the bound on the interconnection terms. According to
this assumption and (16), we have

- 1
R Y
d0i

k ‘ , n _ , n ,
< B+ (X~ Xa) Y by (OB | < 2Ty B

dOi Jj=1 j=l1

@n

where T';; is some positive number.

Remark 1: We are not assuming that Eg and
E:],- are bounded, but we are making an assumption
that their rate of increase is bounded during the
analysis of E('ﬁ . Thus, this assumption is a mild one.

Now let’s analyze the bound of the interconnection
terms|A,-1 (.)!. Based on (15), (16), and (21), it is easy

to verify that there exist some positive constants A4;;,

By, Cy, and Dy, such that the following inequalities

exist.

|(X g = Xa il < Z A4E,7,
j_

2

ql qz| ZBIJEq/ ’
(22)
(Xgi = Xa) il

sZc,JEq,z,

(X Xdz)ldzlqzl ZD E 2
Jj=1

We can thus conclude that [A,-(.)| is bounded

according to
A0l < ZE,]quz, (23)

where Eij =A4; + B +C,-j +Dl~j.
a)S

2H,

Define x; = 4;,

i i2=Awi=a)i_ws’ X3 =~

1

AP, u; :——a)s,—Avi, and £; =——,1—, then the
2H;Ty0i Taoi

above system model can be transformed into the
following simplified system
X1 = Xp
X3 —kx3 +u; + A ().

The output of the system is the power angle

denoted as y; =x;;. Our objective is to make the

system output track the desire set point, i.e., J; = é}d .

In (24), the definition of A;(.) is differsnt from
that of (20). The bound of the new A;(.) is given by

|A1()| Y T | |max

min‘ d0min

ZE,]Egyz (25)

min j=]

2
<8y +25,JEW :

2H

4. CONTROLLER DESIGN

In this section, a NN based controller designs is
proposed. The controller design is introduced using a
theorem, and is described as follows.

First, consider the i-th subsystem. Define the filter
error 7, as

n=lAl 1y

14

(26)

is an

and A; =[A,AnT

appropriately chosen coefficient vector such that

T
where x; =[x;1, %5, %;3]
x; =0 as r, > 0(ie, 52+ Aps+4; =0 is Hurwitz).

Taking the derivative of 7 to get
A=l00 ATRG+ O+ u + M+ d. QD)

For subsystem without interconnection term A;(x),

the control signal u; can be chosen as
==K —[0 Al Ix;— £,0), (28)

where K; >0 is the design parameter.

To compensate the effects of interconnection terms,
NN are used here. According to the NN
approximation theory, it can be concluded that there
exists a NN such that

WId.(X;)+¢ =ZE quz, (29)
Jj=1

where X —[Eq, , ] is the input vector to the NN,

E:

; is the bounded NN approximation error given by

|€i| < Eim -
Thus, the actual control signal can be chosen as

u; ==K, —[0 Al Ix; = £i() —sgn( W ®,(X;). (30)

The Lyapunov function for the i-th subsystem is
chosen according to
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1

1 2 7T+ =151

where W, is the weight estimation error defined as

W, =W, ~W, (32)

and I'; >0 is another design parameter.

Taking the derivative of V; to get
V= =Kir? = [T 0,(X) - () + W,

s-K,.rf—|r,.1W,.TcD,.(X,.)+\r,.|ZE,]Eq, T W
=l
(33)
Thus the Lyapunov function for the overall system
becomes

n
V=2V, (34)
i=1
< 2 &7
SZ Kr; ‘|”i|Wi D;(X;)
j=1
’ (35)
=T -1 ~
+|r|z yEy” +W/T, W]
Note that
C 2 C )
ZZEIJEQI ‘ZzEﬁEqi ’ (36)
i=1 j=1 i=1 j=I1
Thus
5 i —Ki1? = |n [T 0,0 +|n| W (X))
<
|+ M+ T,
n
<[ K~ 00X (37)
i=1
+VI~/iTri_1Vf/i +|’}'|8iM:|~
The weights updating rules is changed to
W, =T, || ®:(X,) - T W, (38)
Then (37) becomes
n
V< Z:(—Ki”i2 - a W W, +1r &) (39)
i=1
Since
—a W, ~a ] O, + W)
_ aiap @, (40)
[ e ] < = 2L+ S

and
M P 1
Ml <4 g , 41
i | | 2 2 iM ( )
thus,
. 7 1. » o 2 |
VS;[_(KI'_E)’}' _TIVVI 2l I/Vtmax"'EgiM]'
(42)

2 2
e . oW + &
For simplification, define &= Z%—’—%
i=1
If the selection of design parameters K; and «;, such

1 -
that K,->;/+5, and al-z;/ﬂmax(l“il), then we get

2}+5

n
Z[r +WITW, |+ <7 46

H

< Zn:[_(Ki - ‘;‘)Fiz -

Zily,
2

(43)

Theorem 1: Consider the closed loop system
consisting of system (24), the control signal (30), and
the NN weight updating laws (38). For bounded initial
conditions, all signals in the closed loop system
remain uniformly ultimately bounded, and the system
states x and NN weight estimates W eventually
converge to a compact set Q).

Q:{r,l/f/

Proof: From (44), we can see that if r and W,
are outside of the compact set defined as (45), then

YV will remain negative definite until the systems
state and the weight estimate errors enter the €.

V< é} (44)
74

Thus, # and W; are uniformly ultimately bounded.

Furthermore, since W; exist and are bounded, then #;
are also bounded. Considering (26) and the
boundedness of r;, we can conclude that x; is bounded.
Using (28), we conclude that control signal « is also
bounded.

Thus, all signals in the closed loop system remain

bounded, and the system state vector x, and NN
weight estimates W, eventually converge to a

compact set Q [25].

Remark 2: In the proposed weight updates,
persistency of excitation condition is not required.
Weight updates using (38) is similar to o -modifica-
tion in the standard adaptive control.

Remark 3: The weights of the hidden layer are
randomly chosen initially between 0 and 1, and fixed,
therefore, not adapted. The initial weights of the
output layer are just set to zero and then adapted
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online according to (38). There is no preliminary off-
line learning phase, and stability will be provided by
the outer tracking loop until the NN learns. This is a
significant improvement over other NN control
techniques where one must find some initial
stabilizing weights, generally a difficult task for
complex nonlinear systems over a wide range of
operating conditions.

5. SIMULATION STUDIES

The proposed decentralized NN controller design is
tested with the WECC 3-machine 9-bus system, which
is shown in Fig. 2. The parameters of the system are
borrowed from [23]. For convenience, the parameters
of the generator and excitation systems, and the

transmission lines are listed in Tables 1-2, respectively.

The design parameters for the three generators are
the same, and chosen as 4=[4, 4], K=2, I'=2, a/~2.
Each neural network is selected to have ten hidden
neurons in the hidden layer, and logarithmic sigmoid
transfer functions.

The proposed decentralized controller is evaluated
under the following two operating conditions.

Test 1: A 200ms line loss. Line 5-7 was
disconnected for 200ms at 1sec and then recovered at
1.2sec.

Output: 6, Output: 5,

Test t:
Control: £, Te_mpomry
line loss

<

<

1+035) T Control: £,
<
<

Test 2:

Temporary
load change 4
125 +0.5/ 0.9+03/

>
>
>
>
>

Test 3:
Slack bus ——f i
Control: £, @ Output: &,

Operating point
change

Fig. 2. Configuration of the WECC 3-machine power

system.

AAA—AAA

Table 1. Parameters of the generators.

Parameters | Machine 1 | Machine 2 | Machine3
H (sec) 23.64 6.4 3.01
Xy (pu) 0.146 0.8958 1.3125
X,} (pu) 0.0608 0.1198 0.1813
X, (pw) 0.0969 0.8645 1.2578
T,jo (sec) 8.96 6.0 5.89
T, (sec) 0.2 0.2 0.2
K, (pw) 20 20 20

Table 2. Parameters of the transmission lines.

Bus i Busj Ry Xy By
1 4 0 0.0576 0
2 7 0 0.0625 0
3 9 0 0.0586 0
4 5 0.01 0.085 0.088
4 6 0.017 0.092 0.079
5 7 0.032 0.161 0.153
6 9 0.039 0.17 0.179
7 8 0.0085 | 0.072 | 0.0745
8 9 0.0119 | 0.1008 | J.1045

Test 2: A 200ms load change. Load connected to
bus 5 was doubled at 1sec and then changed back at
1.2sec.

For each of the three cases, the proposed controller
is compared with the case without control, and the
case under conventional controls. This idea is
illustrated in Fig. 3, where there are three positions for
the switch to connect the NNDC (Neural Network
based Decentralized Controller), the conventional
controllers consisted of an AVR and a CPSS, and the
ground (without control). The model of the voltage
regulator and the configuration of CPSS are shown in
(45) and Fig. 4, respectively.

TaiEfdi = _Efdi +Kai(Vreﬁ - Vl +V si) (45)

ps.

Usually the two lead-lag compensator blocks in
CPSS are identical, which means T,=T3, 7,=T,, thus
there are five tunable parameters for each CPSS, i.e.,
T;, T, Ts, Ts, and K. If equipping all the three
generators with CPSSs, there will be 15 design
parameters in total. Improper selection of the design
parameters will result in interaction between the
CPSSs that will deteriorate the dynamic performance
of the power system. Thus, the 15 parameters need to
be tuned together, which is a very difficult task. To
obtain a convincing comparison, the proposed
controller design should be compared to the best
possible performance of the CPSS. To do that, Particle
Swarm Optimization (PSO) is used in this paper,

Local measurement

large-scale
\ power systems
\

Generator =

Fig. 3. Generator controlled with different controllers.

Aw(s) 1+Ts 1+Tys T,s 1 V()

1+Tps ‘{ 1+T45J_’ T+7s E;_s

Fig. 4. Structure of CPSS suggested by IEEE Std.
421.5 [26].
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trying to find the best set of CPSS parameters.

PSO is one of the latest evolutionary computation
techniques that is simple in concept, easy to
implement and computationally efficient [27]. The
updating rules of PSO are given in (46).

v,

new = WX Vo + ¢ xrandy x (B — Foig)

+ cy X rand2 X (LbeSt - Pold )’ (46)
R ew = Lold T 4

I new?

where V,... is the new velocity vector calculated for
each particle; V, is the velocity vector from the
previous iteration; P, is the new position vector
calculated for each particle; P, is the position vector
of the particle from the previous iteration; W is the
inertia weight constant; c¢; and ¢, is the acceleration
constant; and rand is the generates a uniform random
value between [0 1]. Detailed description of the
algorithm can be found in {27].

According to literature and IEEE recommendation,
the ranges of the five parameters are set
as Ty €[0.1 1), T,€[0.01 0.1}, Tyl 10}, Tye
[0.001 0.01], and K pgg €[0.01 0.1]. The population

size is chosen to be 10. The values for the positive
constant w, ¢;, and ¢, are 0.8, 2, and 2 respectively.

To evaluate a particle (a vector of the 15 CPSS
parameters), the system is simulated with the set of
parameters for some kind of fault. Before the fault is
applied, the system is running stable. For the dynamic
performance evaluation purpose, only the post-fault
response is considered. The sampling time is 0.01 sec.
900 samples data are collected for each candidate
solution, which means 9-sec performance after the
fault is applied. Then the cost is calculated from the
simulation data according to (47).

n

cost = Zt(i)-]Aa}(i)

i=1

: GO

where n is the number of sampled data (900 for our
case), #(i) is the time of the i sample data, and

Aw(i) = w(i)— @, is the speed deviation at time #(7).
The multiplication of #i) and |Aw(i)| gives faster

damping a lower cost.

For each test, the optimization process terminated
after 20 iterations. Table 3 shows the obtained optimal
sets of CPSS parameters corresponding to the two
tests.

From Table 3, it can be seen that the three sets of
CPSS parameters optimized for the three operating
conditions are different. Simulation studies also show
that a CPSS optimized for an operating condition may

not work satisfactorily for another operating condition.

Table 3 explains why the tuning of CPSS parameters
is difficult. To present a convincing comparison, the
proposed NN-based controller design with fixed

Table 3. Optimal CPSS parameters tuned by PSO.
Kess | T4 T, Ts Ts
CPSS1-110.0350/0.9209(0.0961(9.7246|0.0012
CPSS1-2|0.0109]0.9102(0.0634(9.9781(0.0071
CPSS1-3)0.0662|0.2831(0.0183(9.2696/0.0099
CPSS2-1/0.0974{0.1278{0.0107|9.6142(0.0041
CPSS2-210.0997|0.1773(0.0101|9.7898[0.0015
CPSS2-310.0915]0.2930/0.0128(1.0140(0.0012

CPSS!
(Testl)

CPSS2
(Test2)

design parameters is compared with the best CPSSs
corresponding to the two tests. Simulation results are
provided in Figs. 5-17.

5.1. 200ms line loss test

Simulation results for the three cases (without
control, with optimized CPSS, and the proposed
NNDC) are provided in Figs. 5-12. Since the ranges
of the responses for the three cases are different,
simulation results are plotted separately. In the
following figures, G1, G2, and G3 stand for the
responses of three generators respectively. The unit of
the speed is radian per second (rad/sec). The units for
the terminal voltage and control signal are per unit

(p.u.).

5.1.1 Without excitation control
From Figs. 5 and 6, oscillations of different modes
can be observed. These oscillations are caused by the

rmem— ey T T T

386 e e e s

Speeds in rad/s

time in seconds

Fig. 5. Speed deviation responses when there is no
excitation control.

Terminal voltage in p.u.

time in seconds

Fig. 6. Terminal voltage responses when there is no
excitation control.
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Fig. 8. Terminal voltage responses with CPSS1.

interactions between generators. It is important to note
that the system will settle down to some operating
point eventually, but the oscillations will persist for a
long time, which is harmful for the transient stability
of power systems and even limits the power transfer

capability.

5.1.2 With the optimized CPSS1

Figs. 7 and 8 are simulation results for CPSSI,
which is optimized specifically for Test 1. Form the
simulation results it can be seen that the oscillations
were efficiently damped out. But the speed oscillation
is between the range of 375.5 rad/sec and 378.5
rad/sec. If we compare it with the response of NNDC
in Fig. 10, we can see that the NNDC can provide a
much better damping by damping the oscillation
within the range of 376.7 rad/sec and 377.3 rad/sec.

5.1.3 With neural networks based decentralized
control

Simulation results of NNDC for Test 1 are provided in

Figs. 9-12.

Usually, damping control will have a bad impact on
the voltage control. From Fig. 10, it can be seen that
the impact of the damping control on the terminal
voltage response is acceptable. It has been proved that
all the signals in the closed loop system are uniformly
ultimately bounded. The weights and control signals
responses confirmed the previous analysis. Unlike
single machine power system, where the magnitude
constraint of control signals can be modeled as
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Fig. 9. Speed deviation responses with the NNDC.
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Fig. 10. Terminal voltage responses with the NNDC.
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Fig. 11. Neural network weights updating process of
the NNDC.
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Fig. 12. Control signal responses with the NNDC.

saturation nonlinearities and included in the stability
analysis [16,18], it is very difficult to do this for
decentralized controls. Fortunately, the magnitude of
the control signals can be decreased by proper
selection of the design parameters. Of course, trying
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Fig. 13. Speed deviation responses when there is no
excitation control.
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to do this will impact the control performance. Even
though, the performance will still be much better than
that of conventional controllers.

5.2. 200ms load change test

Simulation results for Test 2 are provided in Figs
13-17. Again, the responses for the three cases are
plotted in separate figures.

5.2.1 Without excitation control

Similar to Test 1, oscillations of different modes
can be observed in Fig. 13. If the simulation program
is run for longer time, we will see that the speeds
finally converge to the equilibrium point, but it will
take too long time.

5.2.2 With the optimized CPSS2

From Fig. 14, it can be seen that the optimized
CPSS can provide good damping compared to the
case of without stabilizing control. It should be noted
that the CPSS parameters used for this test are
different from Testl. The purpose of doing this is to
compare the NNDC with the best possible
performance of CPSS. During practical operations,
parameter settings of CPSS need to balance all
operating conditions under consideration. That
indicates that its performance for a particular
operating condition will not be as good as this
optimized one.

5.2.3 With neural networks based decentralized
control
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Fig. 15. Speed deviation responses with the NNDC.
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Fig. 16. Terminal voltage responses with the NNDC.
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Fig. 17. Control signal responses with the NNDC.

Figs. 15-17 are simulations results for the proposed
decentralized controllers. The design parameters of
NNDC for this test are the same as Test 1.

From these figures, it can be seen that the NNDC
can adapt to operating condition changes, and provide
much better performance than the optimized
conventional controllers.

6. CONCLUSIONS

This paper introduced a new neural networks based
decentralized controller designs for the excitation
control of multimachine power systems. Though only
local measurable/calculatable signals are used to
calculate the subsystem control input, coordination of
the subsystem control activities and the transient
performance are guaranteed. Simulation results
demonstrate that the proposed controller provides



536

W. Liu, J. Sarangapani, G. K. Venayagamoorthy, L. Liu, D. C. Wunsch II, M. L. Crow, and D. A. Cartes

good performance, and outperforms the optimized
conventional design methods in many aspects. Future
work includes the consideration of more practical
power system models.
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