• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.03 seconds

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.

A Single Allocation Hub Network Design Model for Intermodal Freight Transportation (단일할당 복합운송 허브 네트워크 설계 모형 개발)

  • Kim, Dong-Gyu;Gang, Seong-Cheol;Park, Chang-Ho;Go, Seung-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.129-141
    • /
    • 2009
  • Intermodal freight transportation is defined as the movement of freight from origins to destinations by two or more transportation modes. When implemented in hub networks, it could enhance the efficiency of the networks because consolidated flows are transported by more suitable modes and technologies. In spite of this advantage, the intermodal hub network design problem has received limited attention in the literature partly because of the complex nature of the problem. This paper aims to develop an optimization model for designing intermodal hub networks with sin91e allocation strategy. The model takes into account various cost components of intermodal hub networks including transportation, stationary inventory, and service delay costs. Moreover, using transport frequency variables, it is capable of endogenously determining the transportation economies of scale achieved by consolidation of flows. As such, the model is able to realistically represent the characteristics of intermodal hub networks in practice. Since the model Is a complicated nonlinear integer programming problem, we perform model simplification based on the analytical study of the model, which could facilitate the development of solution algorithms in the future. We expect that this study contributes to the design of intermodal hub networks as well as to the assessment of existing logistics systems.

CAPACITY EXPANSION MODELING OF WATER SUPPLY IN A PLANNING SUPPORT SYSTEM FOR URBAN GROWTH MANAGEMENT (도시성장관리를 위한 계획지원체계에서 상수도의 시설확장 모델링)

  • Hyong-Bok, Kim
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1995.12a
    • /
    • pp.9-21
    • /
    • 1995
  • A planning support system enhances our ability to use water capacity expansion as an urban growth management strategy. This paper reports the development of capacity expansion modeling of water supply as part of the continuing development of such a planning support system (PEGASUS: Planning Environment for Generation and Analysis of Spatial Urban Systems) to incorporate water supply, This system is designed from the understanding that land use and development drive the demand for infrastructure and infrastructure can have a significant influence on the ways in which land is developed and used. Capacity expansion Problems of water supply can be solved in two ways: 1) optimal control theory, and 2) mixed integer nonlinear programming (MINLP). Each method has its strengths and weaknesses. In this study the MINLP approach is used because of its strength of determining expansion sizing and timing simultaneously. A dynamic network optimization model and a water-distribution network analysis model can address the dynamic interdependence between water planning and land use planning. While the water-distribution network analysis model evaluates the performance of generated networks over time, the dynamic optimization model chooses alternatives to meet expanding water needs. In addition, the user and capacity expansion modeling-to-generate-alternatives (MGA) can generate alternatives. A cost benefit analysis module using a normalization technique helps in choosing the most economical among those alternatives. GIS provide a tool for estimating the volume of demanded water and showing results of the capacity expansion model.

  • PDF

Optimization of Wind Turbine Pitch Controller by Neural Network Model Based on Latin Hypercube (라틴 하이퍼큐브 기반 신경망모델을 적용한 풍력발전기 피치제어기 최적화)

  • Lee, Kwangk-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1065-1071
    • /
    • 2012
  • Wind energy is becoming one of the most preferable alternatives to conventional sources of electric power that rely on fossil fuels. For stable electric power generation, constant rotating speed control of a wind turbine is performed through pitch control and stall control of the turbine blades. Recently, variable pitch control has been implemented in modern wind turbines to harvest more energy at variable wind speeds that are even lower than the rated one. Although wind turbine pitch controllers are currently optimized using a step response via the Ziegler-Nichols auto-tuning process, this approach does not satisfy the requirements of variable pitch control. In this study, the variable pitch controller was optimized by a genetic algorithm using a neural network model that was constructed by the Latin Hypercube sampling method to improve the Ziegler-Nichols auto-tuning process. The optimized solution shows that the root mean square error, rise time, and settle time are respectively improved by more than 7.64%, 15.8%, and 15.3% compared with the corresponding initial solutions obtained by the Ziegler-Nichols auto-tuning process.

Hyperparameter Optimization for Image Classification in Convolutional Neural Network (합성곱 신경망에서 이미지 분류를 위한 하이퍼파라미터 최적화)

  • Lee, Jae-Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.148-153
    • /
    • 2020
  • In order to obtain high accuracy with an convolutional neural network(CNN), it is necessary to set the optimal hyperparameters. However, the exact value of the hyperparameter that can make high performance is not known, and the optimal hyperparameter value is different based on the type of the dataset, therefore, it is necessary to find it through various experiments. In addition, since the range of hyperparameter values is wide and the number of combinations is large, it is necessary to find the optimal values of the hyperparameters after the experimental design in order to save time and computational costs. In this paper, we suggest an algorithm that use the design of experiments and grid search algorithm to determine the optimal hyperparameters for a classification problem. This algorithm determines the optima values of the hyperparameters that yields high performance using the factorial design of experiments. It is shown that the amount of computational time can be efficiently reduced and the accuracy can be improved by performing a grid search after reducing the search range of each hyperparameter through the experimental design. Moreover, Based on the experimental results, it was shown that the learning rate is the only hyperparameter that has the greatest effect on the performance of the model.

A Study on the Optimal Location Selection for Hydrogen Refueling Stations on a Highway using Machine Learning (머신러닝 기반 고속도로 내 수소충전소 최적입지 선정 연구)

  • Jo, Jae-Hyeok;Kim, Sungsu
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.83-106
    • /
    • 2021
  • Interests in clean fuels have been soaring because of environmental problems such as air pollution and global warming. Unlike fossil fuels, hydrogen obtains public attention as a eco-friendly energy source because it releases only water when burned. Various policy efforts have been made to establish a hydrogen based transportation network. The station that supplies hydrogen to hydrogen-powered trucks is essential for building the hydrogen based logistics system. Thus, determining the optimal location of refueling stations is an important topic in the network. Although previous studies have mostly applied optimization based methodologies, this paper adopts machine learning to review spatial attributes of candidate locations in selecting the optimal position of the refueling stations. Machine learning shows outstanding performance in various fields. However, it has not yet applied to an optimal location selection problem of hydrogen refueling stations. Therefore, several machine learning models are applied and compared in performance by setting variables relevant to the location of highway rest areas and random points on a highway. The results show that Random Forest model is superior in terms of F1-score. We believe that this work can be a starting point to utilize machine learning based methods as the preliminary review for the optimal sites of the stations before the optimization applies.

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.