• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.033 seconds

determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system (다단계 반복기법을 이용한 관로시스템의 최적관경 결정)

  • Han, Geon-Yeon;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.327-335
    • /
    • 1998
  • The distribution network is an essential part of all water supply systems. The cost of this portion of any sizable water supply system may amount to most of the entire cost of the project. This study tried to reduce the cost of the distribution system through optimization in system design. To determine pipe diameter considered in water distribution system design, a iterative procedure linked the flow analysis model and optimization model was used. Linear theory was introduced to analyze flowrate and revised-simplex method based on linear programming is used to optimize pipe diameter. This model was applied to wter distribution system with 22 and 35 pipes, and rapidly determine optimized commercial pipe diameters. Keywords : water distribution system, revised simplex method, optimum pipe diameters.

  • PDF

A Scheme to Handle Out-of-Order Packets in Route Optimization for Proxy Mobile IPv6 (Proxy Mobile IPv6 에 대한 라우트 최적화에서 불규칙 패킷을 다루기 위한 기법)

  • Anh, Khuong;Yeoum, Sanggil;Kim, Dongsoo;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.190-191
    • /
    • 2014
  • Out-of-Order Packet ($O^3P$) problem is an issue that significantly impacts to the QoS of service and network. Route optimization (RO) in PMIPv6 is proposed by P.Loureiro and M. Liebsch to reduce the load of LMAs and transmission delay. In RO scheme, at the time the optimal path is established, there exist two paths: optimal path and old path as non-optimal path for transmitting data between MN1 and MN2 that is the cause of $O^3P$ occurring. This paper proposes a scheme to prevent $O^3P$ problem by using packet buffering technique and a new mobility message, named End Traffic Marker (ETM) to mark the end of packet delivery through the old path.

Performance Assessment of MDO Optimized 1-Stage Axial Compressor (MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok;Lee, Sae-Il;Lee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.397-400
    • /
    • 2011
  • MDO Optimization for a low pressure axial compressor rotor has been carried out to improve aerodynamic performance and structural stability. Global optimized solution was obtained from an artificial neural network model with genetic algorithm. Optimized rotor model has a high blade loading near hub and near zero incidence flow angle near tip region to reduce the incidence loss and flow separation at trailing edge region. Also the rotor shape is converged to a trapezoid shape to reduce the maximum stress occurred at the root of the blade. Numerical simulation results show that rotor has 87.6% rotor efficiency and safety factor over than 3.

  • PDF

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Energy Efficiency Optimization for multiuser OFDM-based Cognitive Heterogeneous networks

  • Ning, Bing;Zhang, Aihua;Hao, Wanming;Li, Jianjun;Yang, Shouyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2873-2892
    • /
    • 2019
  • Reducing the interference to the licensed mobile users and obtaining the energy efficiency are key issues in cognitive heterogeneous networks. A corresponding rate loss constraint is proposed to be used for the sensing-based spectrum sharing (SBSS) model in cognitive heterogeneous networks in this paper. Resource allocation optimization strategy is designed for the maximum energy efficiency under the proposed interference constraint together with average transmission power constraint. An efficiency algorithm is studied to maximize energy efficiency due to the nonconvex optimal problem. Furthermore, the relationship between the proposed protection criterion and the conventional interference constraint strategy under imperfect sensing condition for the SBSS model is also investigated, and we found that the conventional interference threshold can be regarded as the upper bound of the maximum rate loss that the primary user could tolerate. Simulation results have shown the effectiveness of the proposed protection criterion overcome the conventional interference power constraint.

CoMP Transmission for Safeguarding Dense Heterogeneous Networks with Imperfect CSI

  • XU, Yunjia;HUANG, Kaizhi;HU, Xin;ZOU, Yi;CHEN, Yajun;JIANG, Wenyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.110-132
    • /
    • 2019
  • To ensure reliable and secure communication in heterogeneous cellular network (HCN) with imperfect channel state information (CSI), we proposed a coordinated multipoint (CoMP) transmission scheme based on dual-threshold optimization, in which only base stations (BSs) with good channel conditions are selected for transmission. First, we present a candidate BSs formation policy to increase access efficiency, which provides a candidate region of serving BSs. Then, we design a CoMP networking strategy to select serving BSs from the set of candidate BSs, which degrades the influence of channel estimation errors and guarantees qualities of communication links. Finally, we analyze the performance of the proposed scheme, and present a dual-threshold optimization model to further support the performance. Numerical results are presented to verify our theoretical analysis, which draw a conclusion that the CoMP transmission scheme can ensure reliable and secure communication in dense HCNs with imperfect CSI.

Bi-dimensional Empirical Mode Decomposition Algorithm Based on Particle Swarm-Fractal Interpolation

  • An, Feng-Ping;He, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5955-5977
    • /
    • 2018
  • Performance of the interpolation algorithm used in the technique of bi-dimensional empirical mode decomposition directly affects its popularization and application, so that the researchers pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional empirical mode decomposition (BEMD) and is derived from the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. All parameters involved in the interpolation process are determined by using the particle swarm optimization algorithm. The presented interpolation algorithm can solve those problems of low efficiency and poor precision in the interpolation operation of bi-dimensional empirical mode decomposition and can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher speed in the decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.

Optimizing 2-stage Tiling-based Matrix Multiplication in FPGA-based Neural Network Accelerator (FPGA기반 뉴럴네트워크 가속기에서 2차 타일링 기반 행렬 곱셈 최적화)

  • Jinse, Kwon;Jemin, Lee;Yongin, Kwon;Jeman, Park;Misun, Yu;Taeho, Kim;Hyungshin, Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.367-374
    • /
    • 2022
  • The acceleration of neural networks has become an important topic in the field of computer vision. An accelerator is absolutely necessary for accelerating the lightweight model. Most accelerator-supported operators focused on direct convolution operations. If the accelerator does not provide GEMM operation, it is mostly replaced by CPU operation. In this paper, we proposed an optimization technique for 2-stage tiling-based GEMM routines on VTA. We improved performance of the matrix multiplication routine by maximizing the reusability of the input matrix and optimizing the operation pipelining. In addition, we applied the proposed technique to the DarkNet framework to check the performance improvement of the matrix multiplication routine. The proposed GEMM method showed a performance improvement of more than 2.4 times compared to the non-optimized GEMM method. The inference performance of our DarkNet framework has also improved by at least 2.3 times.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models (회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석)

  • Min-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.299-304
    • /
    • 2023
  • Among artificial intelligence techniques, deep learning is a model that has been used in many places and has proven its effectiveness. However, deep learning models are not used effectively in everywhere. In this paper, we will show the limitations of deep learning models through comparison of regression analysis and deep learning models, and present a guide for effective use of deep learning models. In addition, among various techniques used for optimization of deep learning models, data normalization and data shuffling techniques, which are widely used, are compared and evaluated based on actual data to provide guidelines for increasing the accuracy and value of deep learning models.