Sangkeum Lee;Sarvar Hussain Nengroo;Hojun Jin;Yoonmee Doh;Chungho Lee;Taewook Heo;Dongsoo Har
ETRI Journal
/
v.45
no.4
/
pp.650-665
/
2023
A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.
IEMEK Journal of Embedded Systems and Applications
/
v.19
no.2
/
pp.107-114
/
2024
Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.
International Journal of Computer Science & Network Security
/
v.24
no.4
/
pp.11-25
/
2024
The proliferation of IoT devices has presented an unprecedented challenge in managing device identities securely and efficiently. In this paper, we introduce an innovative Hybrid Blockchain-Based Approach for IoT Identity Management that prioritizes both security and efficiency. Our hybrid solution, strategically combines the advantages of direct and indirect connections, yielding exceptional performance. This approach delivers reduced latency, optimized network utilization, and energy efficiency by leveraging local cluster interactions for routine tasks while resorting to indirect blockchain connections for critical processes. This paper presents a comprehensive solution to the complex challenges associated with IoT identity management. Our Hybrid Blockchain-Based Approach sets a new benchmark for secure and efficient identity management within IoT ecosystems, arising from the synergy between direct and indirect connections. This serves as a foundational framework for future endeavors, including optimization strategies, scalability enhancements, and the integration of advanced encryption methodologies. In conclusion, this paper underscores the importance of tailored strategies in shaping the future of IoT identity management through innovative blockchain integration.
The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.
International Journal of Computer Science & Network Security
/
v.24
no.9
/
pp.105-110
/
2024
Nowadays, permutation problems with large state spaces and the path to solution is irrelevant such as N-Queens problem has the same general property for many important applications such as integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming, telecommunications network optimization, vehicle routing, and portfolio management. Therefore, methods which are able to find a solution are very important. Genetic algorithm (GA) is one the most well-known methods for solving N-Queens problem and applicable to a wide range of permutation problems. In the absence of specialized solution for a particular problem, genetic algorithm would be efficient. But holism and random choices cause problem for genetic algorithm in searching large state spaces. So, the efficiency of this algorithm would be demoted when the size of state space of the problem grows exponentially. In this paper, the new method presented based on genetic algorithm to cover this weakness. This new method is trying to provide partial view for genetic algorithm by locally searching the state space. This may cause genetic algorithm to take shorter steps toward the solution. To find the first solution and other solutions in N-Queens problem using proposed method: dividing N-Queens problem into subproblems, which configuring initial population of genetic algorithm. The proposed method is evaluated and compares it with two similar methods that indicate the amount of performance improvement.
Lingli Cui;Gang Wang;Dongdong Liu;Jiawei Xiang;Huaqing Wang
Smart Structures and Systems
/
v.33
no.4
/
pp.253-262
/
2024
Current-based mechanical fault diagnosis is more convenient and low cost since additional sensors are not required. However, it is still challenging to achieve this goal due to the weak fault information in current signals. In this paper, a dual-loss convolutional neural network (DLCNN) is proposed to implement the intelligent bearing fault diagnosis via current signals. First, a novel similarity loss (SimL) function is developed, which is expected to maximize the intra-class similarity and minimize the inter-class similarity in the model optimization operation. In the loss function, a weight parameter is further introduced to achieve a balance and leverage the performance of SimL function. Second, the DLCNN model is constructed using the presented SimL and the cross-entropy loss. Finally, the two-phase current signals are fused and then fed into the DLCNN to provide more fault information. The proposed DLCNN is tested by experiment data, and the results confirm that the DLCNN achieves higher accuracy compared to the conventional CNN. Meanwhile, the feature visualization presents that the samples of different classes are separated well.
An effective methodology is reported for the optimal design of multisite batch production/transportation and storage networks under uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, internally consumed, transported to or from other plant sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between plant sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of large-scale supply chain system.
In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.
Transactions of the Korean Society of Mechanical Engineers A
/
v.35
no.7
/
pp.759-766
/
2011
Recently, noise reduction in room air conditioners has been one of the important issues as well as cooling efficiency. The rotary compressor is the dominant noise source in an air conditioner. A number of studies have been conducted on reducing compressor noise through improving muffler and resonator design. However the noise from the accumulator, a noise delivering path between compressor and air conditioner, is not fully taken into consideration. The accumulator contains a large inner cavity, and usually generates additional resonance noise during operation. This paper aims to conduct an optimal design for reducing accumulator noise by maximizing the transmission loss within the target frequency range that represents high-order nonlinearity. Design of experiments and radial basis function neural network are used in the context of approximate meta-models, and genetic algorithm is used as an optimization tool.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.05a
/
pp.373-378
/
2006
Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.