• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.025 seconds

WBAN Service Quality Optimization Design Using Error Correction Technique (에러교정기법을 이용한 WBAN 서비스품질 최적화 설계)

  • Lee, Jung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.657-662
    • /
    • 2019
  • The power consumption of wearable sensors and electrocardiogram regulators should be very low to extend the network lifetime and anticipated QoS( : Quality of Service) control such as error correction and authentication of data processed by WBAN( : Wireless Body Area Network) nodes is important. Therefore, QoS control is the most urgent concern to implement WBAN in health monitoring regulations. For optimal QoS control, we compare the energy efficiency and the average number of transmissions with IEEE 802.15.6 and the error correction method considering energy efficiency. The performance of the proposed error correction technique shows that the energy efficiency and the transmission rate are improved by adjusting the coding rate appropriately using the channel estimation.

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

Research Trends in Wi-Fi Performance Improvement in Coexistence Networks with Machine Learning (기계학습을 활용한 이종망에서의 Wi-Fi 성능 개선 연구 동향 분석)

  • Kang, Young-myoung
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 2022
  • Machine learning, which has recently innovatively developed, has become an important technology that can solve various optimization problems. In this paper, we introduce the latest research papers that solve the problem of channel sharing in heterogeneous networks using machine learning, analyze the characteristics of mainstream approaches, and present a guide to future research directions. Existing studies have generally adopted Q-learning since it supports fast learning both on online and offline environment. On the contrary, conventional studies have either not considered various coexistence scenarios or lacked consideration for the location of machine learning controllers that can have a significant impact on network performance. One of the powerful ways to overcome these disadvantages is to selectively use a machine learning algorithm according to changes in network environment based on the logical network architecture for machine learning proposed by ITU.

A cache placement algorithm based on comprehensive utility in big data multi-access edge computing

  • Liu, Yanpei;Huang, Wei;Han, Li;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3892-3912
    • /
    • 2021
  • The recent rapid growth of mobile network traffic places multi-access edge computing in an important position to reduce network load and improve network capacity and service quality. Contrasting with traditional mobile cloud computing, multi-access edge computing includes a base station cooperative cache layer and user cooperative cache layer. Selecting the most appropriate cache content according to actual needs and determining the most appropriate location to optimize the cache performance have emerged as serious issues in multi-access edge computing that must be solved urgently. For this reason, a cache placement algorithm based on comprehensive utility in big data multi-access edge computing (CPBCU) is proposed in this work. Firstly, the cache value generated by cache placement is calculated using the cache capacity, data popularity, and node replacement rate. Secondly, the cache placement problem is then modeled according to the cache value, data object acquisition, and replacement cost. The cache placement model is then transformed into a combinatorial optimization problem and the cache objects are placed on the appropriate data nodes using tabu search algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, a multi-access edge computing experimental environment is built. Experimental results show that CPBCU provides a significant improvement in cache service rate, data response time, and replacement number compared with other cache placement algorithms.

Path-Based Computation Encoder for Neural Architecture Search

  • Yang, Ying;Zhang, Xu;Pan, Hu
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.188-196
    • /
    • 2022
  • Recently, neural architecture search (NAS) has received increasing attention as it can replace human experts in designing the architecture of neural networks for different tasks and has achieved remarkable results in many challenging tasks. In this study, a path-based computation neural architecture encoder (PCE) was proposed. Our PCE first encodes the computation of information on each path in a neural network, and then aggregates the encodings on all paths together through an attention mechanism, simulating the process of information computation along paths in a neural network and encoding the computation on the neural network instead of the structure of the graph, which is more consistent with the computational properties of neural networks. We performed an extensive comparison with eight encoding methods on two commonly used NAS search spaces (NAS-Bench-101 and NAS-Bench-201), which included a comparison of the predictive capabilities of performance predictors and search capabilities based on two search strategies (reinforcement learning-based and Bayesian optimization-based) when equipped with different encoders. Experimental evaluation shows that PCE is an efficient encoding method that effectively ranks and predicts neural architecture performance, thereby improving the search efficiency of neural architectures.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

A Survey on the Mobile Crowdsensing System life cycle: Task Allocation, Data Collection, and Data Aggregation

  • Xia Zhuoyue;Azween Abdullah;S.H. Kok
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.31-48
    • /
    • 2023
  • The popularization of smart devices and subsequent optimization of their sensing capacity has resulted in a novel mobile crowdsensing (MCS) pattern, which employs smart devices as sensing nodes by recruiting users to develop a sensing network for multiple-task performance. This technique has garnered much scholarly interest in terms of sensing range, cost, and integration. The MCS is prevalent in various fields, including environmental monitoring, noise monitoring, and road monitoring. A complete MCS life cycle entails task allocation, data collection, and data aggregation. Regardless, specific drawbacks remain unresolved in this study despite extensive research on this life cycle. This article mainly summarizes single-task, multi-task allocation, and space-time multi-task allocation at the task allocation stage. Meanwhile, the quality, safety, and efficiency of data collection are discussed at the data collection stage. Edge computing, which provides a novel development idea to derive data from the MCS system, is also highlighted. Furthermore, data aggregation security and quality are summarized at the data aggregation stage. The novel development of multi-modal data aggregation is also outlined following the diversity of data obtained from MCS. Overall, this article summarizes the three aspects of the MCS life cycle, analyzes the issues underlying this study, and offers developmental directions for future scholars' reference.

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.