The Journal of the Korea institute of electronic communication sciences
/
v.14
no.4
/
pp.657-662
/
2019
The power consumption of wearable sensors and electrocardiogram regulators should be very low to extend the network lifetime and anticipated QoS( : Quality of Service) control such as error correction and authentication of data processed by WBAN( : Wireless Body Area Network) nodes is important. Therefore, QoS control is the most urgent concern to implement WBAN in health monitoring regulations. For optimal QoS control, we compare the energy efficiency and the average number of transmissions with IEEE 802.15.6 and the error correction method considering energy efficiency. The performance of the proposed error correction technique shows that the energy efficiency and the transmission rate are improved by adjusting the coding rate appropriately using the channel estimation.
Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.
Machine learning, which has recently innovatively developed, has become an important technology that can solve various optimization problems. In this paper, we introduce the latest research papers that solve the problem of channel sharing in heterogeneous networks using machine learning, analyze the characteristics of mainstream approaches, and present a guide to future research directions. Existing studies have generally adopted Q-learning since it supports fast learning both on online and offline environment. On the contrary, conventional studies have either not considered various coexistence scenarios or lacked consideration for the location of machine learning controllers that can have a significant impact on network performance. One of the powerful ways to overcome these disadvantages is to selectively use a machine learning algorithm according to changes in network environment based on the logical network architecture for machine learning proposed by ITU.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.3892-3912
/
2021
The recent rapid growth of mobile network traffic places multi-access edge computing in an important position to reduce network load and improve network capacity and service quality. Contrasting with traditional mobile cloud computing, multi-access edge computing includes a base station cooperative cache layer and user cooperative cache layer. Selecting the most appropriate cache content according to actual needs and determining the most appropriate location to optimize the cache performance have emerged as serious issues in multi-access edge computing that must be solved urgently. For this reason, a cache placement algorithm based on comprehensive utility in big data multi-access edge computing (CPBCU) is proposed in this work. Firstly, the cache value generated by cache placement is calculated using the cache capacity, data popularity, and node replacement rate. Secondly, the cache placement problem is then modeled according to the cache value, data object acquisition, and replacement cost. The cache placement model is then transformed into a combinatorial optimization problem and the cache objects are placed on the appropriate data nodes using tabu search algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, a multi-access edge computing experimental environment is built. Experimental results show that CPBCU provides a significant improvement in cache service rate, data response time, and replacement number compared with other cache placement algorithms.
Recently, neural architecture search (NAS) has received increasing attention as it can replace human experts in designing the architecture of neural networks for different tasks and has achieved remarkable results in many challenging tasks. In this study, a path-based computation neural architecture encoder (PCE) was proposed. Our PCE first encodes the computation of information on each path in a neural network, and then aggregates the encodings on all paths together through an attention mechanism, simulating the process of information computation along paths in a neural network and encoding the computation on the neural network instead of the structure of the graph, which is more consistent with the computational properties of neural networks. We performed an extensive comparison with eight encoding methods on two commonly used NAS search spaces (NAS-Bench-101 and NAS-Bench-201), which included a comparison of the predictive capabilities of performance predictors and search capabilities based on two search strategies (reinforcement learning-based and Bayesian optimization-based) when equipped with different encoders. Experimental evaluation shows that PCE is an efficient encoding method that effectively ranks and predicts neural architecture performance, thereby improving the search efficiency of neural architectures.
Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.12
/
pp.4385-4399
/
2021
The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.
Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.3
/
pp.794-815
/
2023
The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.
International Journal of Computer Science & Network Security
/
v.23
no.3
/
pp.31-48
/
2023
The popularization of smart devices and subsequent optimization of their sensing capacity has resulted in a novel mobile crowdsensing (MCS) pattern, which employs smart devices as sensing nodes by recruiting users to develop a sensing network for multiple-task performance. This technique has garnered much scholarly interest in terms of sensing range, cost, and integration. The MCS is prevalent in various fields, including environmental monitoring, noise monitoring, and road monitoring. A complete MCS life cycle entails task allocation, data collection, and data aggregation. Regardless, specific drawbacks remain unresolved in this study despite extensive research on this life cycle. This article mainly summarizes single-task, multi-task allocation, and space-time multi-task allocation at the task allocation stage. Meanwhile, the quality, safety, and efficiency of data collection are discussed at the data collection stage. Edge computing, which provides a novel development idea to derive data from the MCS system, is also highlighted. Furthermore, data aggregation security and quality are summarized at the data aggregation stage. The novel development of multi-modal data aggregation is also outlined following the diversity of data obtained from MCS. Overall, this article summarizes the three aspects of the MCS life cycle, analyzes the issues underlying this study, and offers developmental directions for future scholars' reference.
International journal of advanced smart convergence
/
v.12
no.2
/
pp.56-66
/
2023
The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.