• Title/Summary/Keyword: network optimization

Search Result 2,240, Processing Time 0.034 seconds

Minimum Network Connection Cost Algorithm for Partially Survivable Networks Problem of Cellular Telecommunication Systems

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 2016
  • This paper suggests heuristic algorithm with O(mn) polynomial time complexity using Excel for partially survivable networks optimization problem of cellular telecommunication systems with m cells and n hubs. This problem only can be get the solution using linear programming or LINGO software package. The proposed algorithm connects the cell to hubs in ring network with minimum cost as the connection diversity of each cell. If the traffic of ring network (T) is T>2K for ring capacity (K), we adjust the maximum cost hub to MTSO that has a ascending order of (D/DC)/${\Delta}^+$ cell with each cell traffic demand (D) and ${\Delta}^+$=(MTSO cost-maximum cost hub) than we get the $T{\leq}2K$. Finally, we adjust MTSO to the removed maximum cost hub for the cell with 2K-$T{\geq}$(D/DC) and $_{max}{\Delta}^-$. While we using like this simple method, the proposed algorithm can be get the same optimal solution for experimental data as linear programing and LINGO software package.

Cross-Layer Reduction of Wireless Network Card Idle Time to Optimize Energy Consumption of Pull Thin Client Protocols

  • Simoens, Pieter;Ali, Farhan Azmat;Vankeirsbilck, Bert;Deboosere, Lien;Turck, Filip De;Dhoedt, Bart;Demeester, Piet;Torrea-Duran, Rodolfo;Perre, Liesbet Van der;Dejonghe, Antoine
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • Thin client computing trades local processing for network bandwidth consumption by offloading application logic to remote servers. User input and display updates are exchanged between client and server through a thin client protocol. On wireless devices, the thin client protocol traffic can lead to a significantly higher power consumption of the radio interface. In this article, a cross-layer framework is presented that transitions the wireless network interface card (WNIC) to the energy-conserving sleep mode when no traffic from the server is expected. The approach is validated for different wireless channel conditions, such as path loss and available bandwidth, as well as for different network roundtrip time values. Using this cross-layer algorithm for sample scenario with a remote text editor, and through experiments based on actual user traces, a reduction of the WNIC energy consumption of up to 36.82% is obtained, without degrading the application's reactivity.

Neural Network Modeling of Ion Energy Impact on Surface Roughness of SiN Thin Films (신경망을 이용한 SiN 박막 표면거칠기에의 이온에너지 영향 모델링)

  • Kim, Byung-Whan;Lee, Joo-Kong
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.3
    • /
    • pp.159-164
    • /
    • 2010
  • Surface roughness of deposited or etched film strongly depends on ion bombardment. Relationships between ion bombardment variables and surface roughness are too complicated to model analytically. To overcome this, an empirical neural network model was constructed and applied to a deposition process of silicon nitride (SiN) films. The films were deposited by using a pulsed plasma enhanced chemical vapor deposition system in $SiH_4$-$NH_4$ plasma. Radio frequency source power and duty ratio were varied in the range of 200-800 W and 40-100%. A total of 20 experiments were conducted. A non-invasive ion energy analyzer was used to collect ion energy distribution. The diagnostic variables examined include high (or) low ion energy and high (or low) ion energy flux. Mean surface roughness was measured by using atomic force microscopy. A neural network model relating the diagnostic variables to the surface roughness was constructed and its prediction performance was optimized by using a genetic algorithm. The optimized model yielded an improved performance of about 58% over statistical regression model. The model revealed very interesting features useful for optimization of surface roughness. This includes a reduction in surface roughness either by an increase in ion energy flux at lower ion energy or by an increase in higher ion energy at lower ion energy flux.

Effect of Continuity Rate on Multistage Logistic Network Optimization under Disruption Risk

  • Rusman, Muhammad;Shimizu, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.74-84
    • /
    • 2013
  • Modern companies have been facing devastating impacts from unexpected events such as demand uncertainties, natural disasters, and terrorist attacks due to the increasing global supply chain complexity. This paper proposes a multi stage logistic network model under disruption risk. To formulate the problem practically, we consider the effect of continuity rate, which is defined as a percentage of ability of the facility to provide backup allocation to customers in the abnormal situation and affect the investments and operational costs. Then we vary the fixed charge for opening facilities and the operational cost according to the continuity rate. The operational level of the company decreases below the normal condition when disruption occurs. The backup source after the disrup-tion is recovered not only as soon as possible, but also as much as possible. This is a concept of the business continuity plan to reduce the recovery time objective such a continuity rate will affect the investments and op-erational costs. Through numerical experiments, we have shown the proposed idea is capable of designing a resilient logistic network available for business continuity management/plan.

GT-PSO- An Approach For Energy Efficient Routing in WSN

  • Priyanka, R;Reddy, K. Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.17-26
    • /
    • 2022
  • Sensor Nodes play a major role to monitor and sense the variations in physical space in various real-time application scenarios. These nodes are powered by limited battery resources and replacing those resource is highly tedious task along with this it increases implementation cost. Thus, maintaining a good network lifespan is amongst the utmost important challenge in this field of WSN. Currently, energy efficient routing techniques are considered as promising solution to prolong the network lifespan where multi-hop communications are performed by identifying the most energy efficient path. However, the existing scheme suffer from performance related issues. To solve the issues of existing techniques, a novel hybrid technique by merging particle swarm optimization and game theory model is presented. The PSO helps to obtain the efficient number of cluster and Cluster Head selection whereas game theory aids in finding the best optimized path from source to destination by utilizing a path selection probability approach. This probability is obtained by using conditional probability to compute payoff for agents. When compared to current strategies, the experimental study demonstrates that the proposed GTPSO strategy outperforms them.

Graph neural network based multiple accident diagnosis in nuclear power plants: Data optimization to represent the system configuration

  • Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2859-2870
    • /
    • 2022
  • Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.

A connection method of LPSolve and Excel for network optimization problem (네트워크 최적화 문제의 해결을 위한 LPSolve와 엑셀의 연동 방안)

  • Kim, Hu-Gon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.187-196
    • /
    • 2010
  • We present a link that allows Excel to call the functions in the lp_solve system. lp_solve is free software licensed under the GPL that solves linear and mixed integer linear programs of moderate size. Our link manages the interface between Excel and lp_solve. Excel has a built-in add-in named Solver that is capable of solving mixed integer programs, but only with fewer than 200 variables. This link allows Excel users to handle substantially larger problems at no extra cost. Futhermore, we introduce that a network drawing method in Excel using arc adjacency lists of a network.

A Study on the Performance Monitoring and Optimization of a High Speed Network for the Transfer of Massive VLBI Data (대용량 VLBI 데이터 전송을 위한 초고속 네트워크 성능 모니터링 및 최적화 연구)

  • Song, Min-Gyu;Kim, Hyo-Ryung;Kang, Yong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1097-1108
    • /
    • 2019
  • In VLBI(Very Long Baseline Interferometry), the observed data created in many observatories which are far away from each other should be collected in correlation center for data analysis. Traditionally, observed data is moved by transportation such as car or airplane. But it is replaced with data transfer over the network rapidly as the advancement of information technology, and therefore, international cooperative research is also now more widely expanding. e-KVN(electronic Korean VLBI Network) has been upgraded two times so the network interface of KVN has been evolved to the highest specification of 100GbE. During this time period, the portion of network usage for VLBI observations and experiments in KVN has been increased exponentially. In this paper, we describe KVN VLBI system and network technology for the performance upgrade and advanced status monitoring between three radio astronomy observatories and Daejeon correlation center with KREONET(Korea Research Environment Open NETwork). Furthermore, future plan of e-KVN for the implementation of wide band VLBI observation will be also briefly discussed.

Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network

  • Rao, Zheheng;Zeng, Chunyan;Wu, Minghu;Wang, Zhifeng;Zhao, Nan;Liu, Min;Wan, Xiangkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.413-435
    • /
    • 2018
  • Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.