In this study, a deep learning-based network that can predict the aerodynamic characteristics of airfoils was designed, and the feasibility of the proposed network was confirmed by applying aerodynamic data generated by Xfoil. The prediction of aerodynamic characteristics according to the variation of airfoil thickness was performed. Considering the angle of attack, the coordinate data of an airfoil is converted into image data using signed distance function. Additionally, the distribution of the pressure coefficient on airfoil is expressed as reduced data via proper orthogonal decomposition, and it was used as the output of the proposed network. The test data were constructed to evaluate the interpolation and extrapolation performance of the proposed network. As a result, the coefficients of determination of the lift coefficient and moment coefficient were confirmed, and it was found that the proposed network shows benign performance for the interpolation test data, when compared to that of the extrapolation test data.
This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...
This paper presents a neural network based adaptive dead-time compensation strategy for an inverter fed permanent magnet synchronous motor drive. The neural network is used for identifying the dead-time compensation time (DTCT) that includes an equivalent dead-time, turn-on/off time and on-state voltage components of the voltage source inverter. In order to train the neural network, desired DTCTs for eight operating points are prepared as training data. The trained neural network can identify a desired DTCT for any operating point because it has the capability of the interpolation. The accuracy of the identified DTCT is experimentally confirmed by comparing the calculated active power with a measured one.
Kim, Yong-Hoon;Im, Hyo-Hyuk;Ha, Ji-Hun;Park, Kun-Woo;Kim, Yong-Hyuk
Journal of the Korea Convergence Society
/
v.11
no.8
/
pp.7-13
/
2020
Meteorology and climate are closely related to human life. By using high-resolution weather data, services that are useful for real-life are available, and the need to produce high-resolution weather data is increasing. We propose a method for super-resolution temperature data using SRCNN. To evaluate the super-resolution temperature data, the temperature for a non-observation point is obtained by using the inverse distance weighting method, and the super-resolution temperature data using interpolation is compared with the super-resolution temperature data using SRCNN. We construct an SRCNN model suitable for super-resolution of temperature data and perform super-resolution of temperature data. As a result, the prediction performance of the super-resolution temperature data using SRCNN was about 10.8% higher than that using interpolation.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.5C
/
pp.487-495
/
2007
When error occurs during the network transmission of the image, the quality of the restored image is very serious. Therefore to maintain the received image quality, the error concealment technique is necessary. This paper presents an efficient spatial error concealment method using adaptive edge-oriented interpolation. It deals with errors on slice level. The proposed method uses boundary matching method having 2-step processes. We divide error block into external and internal region, adaptively restore each region. Because this method use overall as well as local edge characteristics, it preserves edge continuity and texture feature. The proposed technique reduces the complexity and provide better reconstruction quality for damaged images than the previous methods.
The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.
Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.
Journal of the Korean Graphic Arts Communication Society
/
v.18
no.1
/
pp.103-112
/
2000
The color space transformation to link device-dependent color spaces and device-independent color spaces is essential for device characterization and cross-media color reproduction. There are various color conversion methods such as regression, 3D interpolation with LUT(look-up table), and neural network. In the color transformation with these methods, the conversion accuracy is essentially based on the sample data to be exploited for device characterization. In conventional method, color samples are uniformly selected in device-dependent space such as CMY and RGB. However, distribution of these color samples is very non-uniform in device-independent color space such as CIEL*a*b*. Accordingly, the conversion error in device-independent color space is irregular according to the distribution of the samples. In this paper, a color sampling method based on equi-visual perception is proposed to obtain approximate uniform color samples in CIEL*a*b* space. In order to evaluate transformation accuracy of proposed method, color space transformations are simulated using regression, 3D interpolation with LUT and neural network techniques, respectively.
Journal of Korean Society for Atmospheric Environment
/
v.31
no.6
/
pp.585-592
/
2015
In this study, by applying mobile based GIS and image analysis of particulate matter ($PM_{10}$) concentration in Seoul and Ulsan in Korea, to identify the user's location and also implemented the application to information exchange. It strengthened citizens' access to air quality information through the application and derived the expanded environment information sharing through real-time user participation. Through atmospheric concentrations image analysis, it showed a new environmental information construction possibility. It had the effect of expanding the information collecting through the local user participation on the limited information collected area which place is not yet constructed atmospheric monitoring network. Location-based particulate matter information service application provides a user location's $PM_{10}$ information from the 25 urban air monitoring network real-time database of the Ministry of Environment. Furthermore, if the user sent a picture of the atmosphere to the server, should match the image density values of the database and express on Seoul's maps through the IDW interpolation. And then a $PM_{10}$ concentration result is transmitted to user in real time.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.8
/
pp.3820-3841
/
2018
Most of the accidents occur due to drowsiness while driving, avoiding road signs and due to driver's distraction. Driver's distraction depends on various factors which include talking with passengers while driving, mood disorder, nervousness, anger, over-excitement, anxiety, loud music, illness, fatigue and different driver's head rotations due to change in yaw, pitch and roll angle. The contribution of this paper is two-fold. Firstly, a data set is generated for conducting different experiments on driver's distraction. Secondly, novel approaches are presented that use features based on facial points; especially the features computed using motion vectors and interpolation to detect a special type of driver's distraction, i.e., driver's head rotation due to change in yaw angle. These facial points are detected by Active Shape Model (ASM) and Boosted Regression with Markov Networks (BoRMaN). Various types of classifiers are trained and tested on different frames to decide about a driver's distraction. These approaches are also scale invariant. The results show that the approach that uses the novel ideas of motion vectors and interpolation outperforms other approaches in detection of driver's head rotation. We are able to achieve a percentage accuracy of 98.45 using Neural Network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.