• Title/Summary/Keyword: network interpolation

Search Result 209, Processing Time 0.031 seconds

Deep Learning Based Gray Image Generation from 3D LiDAR Reflection Intensity (딥러닝 기반 3차원 라이다의 반사율 세기 신호를 이용한 흑백 영상 생성 기법)

  • Kim, Hyun-Koo;Yoo, Kook-Yeol;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

  • Hwang, Jae Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2020
  • Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.

Study on the Reconstruction of Pressure Field in Sloshing Simulation Using Super-Resolution Convolutional Neural Network (심층학습 기반 초해상화 기법을 이용한 슬로싱 압력장 복원에 관한 연구)

  • Kim, Hyo Ju;Yang, Donghun;Park, Jung Yoon;Hwang, Myunggwon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.72-79
    • /
    • 2022
  • Deep-learning-based Super-Resolution (SR) methods were evaluated to reconstruct pressure fields with a high resolution from low-resolution images taken from a coarse grid simulation. In addition to a canonical SRCNN(super-resolution convolutional neural network) model, two modified models from SRCNN, adding an activation function (ReLU or Sigmoid function) to the output layer, were considered in the present study. High resolution images obtained by three models were more vivid and reliable qualitatively, compared with a conventional super-resolution method of bicubic interpolation. A quantitative comparison of statistical similarity showed that SRCNN model with Sigmoid function achieved best performance with less dependency on original resolution of input images.

Temporally adaptive and region-selective signaling of applying multiple neural network models

  • Ki, Sehwan;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.237-240
    • /
    • 2020
  • The fine-tuned neural network (NN) model for a whole temporal portion in a video does not always yield the best quality (e.g., PSNR) performance over all regions of each frame in the temporal period. For certain regions (usually homogeneous regions) in a frame for super-resolution (SR), even a simple bicubic interpolation method may yield better PSNR performance than the fine-tuned NN model. When there are multiple NN models available at the receivers where each NN model is trained for a group of images having a specific category of image characteristics, the performance of Quality enhancement can be improved by selectively applying an appropriate NN model for each image region according to its image characteristic category to which the NN model was dedicatedly trained. In this case, it is necessary to signal which NN model is applied for each region. This is very advantageous for image restoration and quality enhancement (IRQE) applications at user terminals with limited computing capabilities.

  • PDF

Performances Comparison of Compact Network RTK User Based on Modelling of Multiple Reference Station Corrections (다중 기준국 보정정보 모델링 방식에 따른 Compact Network RTK 사용자 성능 비교)

  • Song, June-Sol;Park, Byung-Woon;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.475-483
    • /
    • 2013
  • In this paper, the performances of modeling methods for combining corrections from multiple reference stations for network user were compared and analyzed. The longer the distance between reference station and user is, the more the GPS errors are decorrelated. Based on this point, multiple corrections from reference stations which is constituting a network should be combined properly to be applied for user observation to eliminate GPS errors. There are many widely used conventional modeling methods and they are applied for Compact Network RTK users and user position accuracy is predicted by using residual errors in observation of user. Compact Network RTK is a technique of generating corrections which was developed by Seoul National University. As a result, the horizontal and vertical accuracies were within about 5 cm and 7 cm respectively with 95 % probability for all conventional modeling methods. In addition, we analyzed condition for reference station constellation for modeling method using height information.

Automatic Film Line Scratch Removal System using Spatial Information (공간 정보를 이용한 오래된 필름에서의 스크래치 제거 시스템)

  • Ko, Eun-Jeong;Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.162-169
    • /
    • 2008
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each regions. It has gained increasing attention by many researchers, to support multimedia service of high quality. Among artifacts, scratch is the most frequent degradation. In this paper, an automatic film line scratch removal system is developed that can detect and restore all kind of scratches. For this we use the spatial information of scratches: The scratch in old films has lower or higher brightness than neighboring pixels in its vicinity and usually appears as a vertically long thin line. Our systems consists of scratch detection and scratch restoration. The scratches of various types are detected by neural network based texture classifier and morphology-based shape filter and then the degraded regions are restored using bilinear interpolation. To assess the validity of the Proposed method, it has been tested with all kinds of scratches, and then experimental results show that the proposed approach is robust to various scratches and efficient to apply a real film removal system.

The study of sound source synthesis IC to realize the virtual engine sound of a car powered by electricity without an engine (엔진 없이 전기로 구동되는 자동차의 가상 엔진 음 구현을 위한 음원합성 IC에 관한 연구)

  • Koo, Jae-Eul;Hong, Jae-Gyu;Song, Young-Woog;Lee, Gi-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.571-577
    • /
    • 2021
  • This study is a study on System On Chip (SOC) that implements virtual engine sound in electric vehicles without engines, and realizes vivid engine sound by combining Adaptive Difference PCM (ADPCM) method and frequency modulation method for satisfaction of driver's needs and safety of pedestrians. In addition, by proposing an electronic sound synthesis algorithm applying Musical Instrument Didital Interface (MIDI), an engine sound synthesis method and a constitutive model of an engine sound generation system are presented. In order to satisfy both drivers and pedestrians, this study uses Controller Area Network (CAN) communication to receive information such as Revolution Per Minute (RPM), vehicle speed, accelerator pedal depressed amount, torque, etc., transmitted according to the driver's driving habits, and then modulates the frequency according to the appropriate preset parameters We implemented an interaction algorithm that accurately reflects the intention of the system and driver by using interpolation for the system, ADPCM algorithm for reducing the amount of information, and MIDI format information for making engine sound easier.

Optimized inverse distance weighted interpolation algorithm for γ radiation field reconstruction

  • Biao Zhang;Jinjia Cao;Shuang Lin;Xiaomeng Li;Yulong Zhang;Xiaochang Zheng;Wei Chen;Yingming Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.160-166
    • /
    • 2024
  • The inversion of radiation field distribution is of great significance in the decommissioning sites of nuclear facilities. However, the radiation fields often contain multiple mixtures of radionuclides, making the inversion extremely difficult and posing a huge challenge. Many radiation field reconstruction methods, such as Kriging algorithm and neural network, can not solve this problem perfectly. To address this issue, this paper proposes an optimized inverse distance weighted (IDW) interpolation algorithm for reconstructing the gamma radiation field. The algorithm corrects the difference between the experimental and simulated scenarios, and the data is preprocessed with normalization to improve accuracy. The experiment involves setting up gamma radiation fields of three Co-60 radioactive sources and verifying them by using the optimized IDW algorithm. The results show that the mean absolute percentage error (MAPE) of the reconstruction result obtained by using the optimized IDW algorithm is 16.0%, which is significantly better than the results obtained by using the Kriging method. Importantly, the optimized IDW algorithm is suitable for radiation scenarios with multiple radioactive sources, providing an effective method for obtaining radiation field distribution in nuclear facility decommissioning engineering.

Setting Out of Construction Works Using GPS Geoid Height. (GPS 지오이드고를 이용한 측설시공)

  • Kwon, Chan-O;Lee, Young-Jin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.89-92
    • /
    • 2007
  • This investigation aims at calculating the geoid height, distance between the ellipsoidal height and the orthometric height by GPS/Levelling data for nationwide 58 Bench Marks, and calculating the effect of geoid height to engineering public works. The accuracy of the results from baseline analyses and adjustment of a network. using GPS surveying data by nationwide 58 BM show 4mm for horizontal direction and 7cm for vertical direction. The 58 geoid height was calculated by GPS/Levelling. For a construction work field GPS/Levelling for distributed 4 BM in test area can calculate the orthometric height in 20 ppm relativity accuracy with 95% reliability. Besides the calculated geoid height in the investigation was 0.367m higher than EGM96 model. The test results of a engineering work site, the result by EGM96 model was 1.8cm in 10km and it was also 3.6cm in interpolation method. The results show that it is equivalent to levelling of $20mm\sqrt{S}$.

  • PDF

A Modular System of the Propagation Neural Networks For Reconstruction of Lost Information (소실 정보의 복원을 위한 전송신경망 모듈라 시스템)

  • Kim, Jong-Man;Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.119-123
    • /
    • 2002
  • A new modular Lateral Information Propagation Networks(LIPN) has been designed. The LIPN has shown to be useful for reconstruction of information[3]. The problem is the fact that only the small number of nodes can be implemented in a IC chip with the circuit VLSI technology. The proposed modular architecture is propagated the neural network through inter module connections. For such inter module connections, the host (computer or logic) mediates the exchange of information among modules. Also border nodes in each module have capacitors for temporarily retaining the information from outer modules. The LIPN with $4{\times}4$ modules has been designed and simulation of interpolation with the designed LIPN has been done.

  • PDF