• 제목/요약/키워드: network inference

검색결과 565건 처리시간 0.032초

연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현 (Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning)

  • 김영준;김태완;김수현;이성재;김태현
    • 대한임베디드공학회논문지
    • /
    • 제19권3호
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

Missing Value Imputation Technique for Water Quality Dataset

  • Jin-Young Jun;Youn-A Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.39-46
    • /
    • 2024
  • 많은 연구자들이 다양한 모델을 이용하여 물의 수질을 평가하기 위해 노력하고 있다. 평가 모델에는 결측값이 없는 데이터셋이 필요하지만, 관측 데이터셋에는 결측값이 다수 포함되는 것이 현실이다. 단순히 결측값을 삭제하는 방법은 경우에 따라 기저 데이터의 분포를 왜곡시키고 모델의 예측성능에도 편의(bias)를 불러올 위험성이 있다. 본 연구에서는 수질 데이터의 결측값 처리에 적합한 기법을 탐색하기 위해, 기존의 KNN과 MICE Imputation, 그리고 생성형 신경망 모델인 Autoencoder와 Denoising Autoencoder를 기반으로 몇 가지 대치 기법을 실험하였다. 실험 결과, KNN과 MICE Imputation의 결과를 평균한 Combined Imputation이 실측치에 가장 가깝게 값을 추정하였으며, 이 기법을 적용하여 결측값을 처리한 관측 데이터셋을 support vector machine과 ensemble 기반의 분류 모델로 평가한 결과, 결측값을 삭제했을 때에 비해 Accuracy, F1 score, ROC-AUC score, 그리고 MCC(Mathews Correlation Coefficient) 지표가 향상되었다.

딥러닝 기반 실내 디자인 인식 (Deep Learning-based Interior Design Recognition)

  • 이원규;박지훈;이종혁;정희철
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

노인 부모와 자녀 사이의 지리적 근접성에 대한 연구 : 미국과 일본의 사례를 중심으로 (Parent-Child Difference in Attitudes, Resources, and Constraints, and the Impacts of these Factors on Generational Proximity in the United States and Japan)

  • 박경숙
    • 한국인구학
    • /
    • 제20권2호
    • /
    • pp.67-98
    • /
    • 1997
  • 노인 부모와 자녀 사이의 지리적 근접성은 각 세대가 고유하게 경험하는 생애이력의 조건과 밀접한 연관을 갖는다. 이 논문에서는 1990년대 초기 미국과 1980년대 후기 일본에서 노인 부모와 중장년 자녀의 생애이력 조건이 세대간 지리적 근접성에 어떠한 영향을 미치는지, 또한 이들 영향의 사회간 유사성과 차이점은 무엇인지를 비교 연구한다. 미국과 일본에서 보이는 세대간 근접성은 상당히 차이를 보이고 있다. 1993년 70세 이상의 미국 백인계 노인 중 약 절반이 그들의 자녀중 한명과 10마일 이내의 가까운 거리에서 살고 있고 나머지 자녀와는 멀리 떨어져 살고 있다. 일본에서 보이는 지리적 가족망은 좀더 위계적이다. 1989년 70세 이상의 일본 노인 중 74%가 한 명의 자녀와 같이 살고 있고 나머지 자녀들과는 멀리 떨어져 살고 있다. 여기에서는 두 사회에서 보이는 부모-자녀간 지리적 근접성에 1) 노인 부모와 자녀들의 생애이력의 조건과, 2) 노인 부모가 거주하는 지역의 경제. 환경적 특성이 미치는 영향을 분석한다. 분석에 활용된 자료는 미국에서 1993년 실시된 Asset and Health Dynamics among the Oldest Old(AHEAD), 일본에서 1989년 실시된 "제2차 가족 생애과정과 가구구조 변화에 대한 인구학적 조사"(DSFH), 그리고 미국 주와 일본의 도 단위의 경제.환경 지표들이다. 가족단위로 층화된 자료에서 발생하는 표본의 비독립성 문제를 가족망(family network)분석기법을 통해 통제하였고 비응답으로 손상된 자료를 개선하기 위하여 무작위 우도적합도 방법과 (random likelihood based inference method) 이차회귀식(two stage equation)방법을 활용하였다.

  • PDF

퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발 (On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network)

  • 김용호;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-64
    • /
    • 1995
  • 로보트 매니퓰레이터는 고도의 비선형 시변 시스템으로써 정밀한 제어가 매우 어려운 제어 대상으로 인식되어 왔으며 따라서 수많은 제어이론의 적용대상이 되어왔다. 로보트 매니퓰레이터의 제어에는 두가지 형태가 있는데 한가지는 궤적계획이고, 또한가지는 궤적 추종이다. 본 논문에서는 궤적 추종을 목적으로 하고, 이를 위해 퍼지논리와 신경회로망을 결합한 지능형 제어를 제안한다. 제안된 제어시스템은 사고 및 추론과 같은 인간의 인식처리에 해당하는 불확실한 것들의 구체화를 가능케하는 퍼지논리와 학습 및 병렬처리능력이 있는 신경회로망을 융합하여 구성된 퍼지-신경망 제어시스템이다. 그러나 이러한 장점을 갖는 퍼지-신경망 제어기도 정확한 제어 규칙의 발생은 어려은데 이는 신경회로망의 지역적 최소치에 빠지는 특성에 기인한다고 볼 수 있다. 그리고 일반적으로 시스템의 비선형 정도는 탐색에 의해서만 알수 있는 성질의 것이므로 본 논문에서는 최적의 탐색알고리듬으로 널리 인정되고 있는 유전알고리듬을 사용하여 전역적이 규칙공간을 탐색한 후 이를 바탕으로 퍼지-신경망 제어기를 완성한다. 제안된 제어시스템의 효율성은 2자유도의 로보트 매니퓰레이터를 사용하여 컴퓨터의 모의실험을 통해 입증된다.

  • PDF

단열조사 및 물리검층을 통한 지표 하 단열특성 해석 (Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings)

  • 채병곤;이대하;김유성;황세호;기원서;김원영;이승구
    • 한국지반환경공학회 논문집
    • /
    • 제2권1호
    • /
    • pp.37-56
    • /
    • 2001
  • 결정질 암반의 단열망 모델 설정의 사전작업으로 단열별 특성에 대한 정밀조사를 실시하였다. 지표에서의 광역적 지질구조 조사와 노두에서 관찰한 단열자료를 토대로 5개의 단열군을 설정하였다. 그중, S1 단열군은 연구지역 내 지표에서 관찬되는 단열 중 가장 밀도가 높고, 연장성도 좋은 단열틀로 구성된다. S4와 S5 단열군은 편마암 내의 엽리면과 엽리면에 평행한 전단단열로 이루어진 것으로서, 단열길이에 대한 가중치 측면에서 매우 중요한 단열군이다. 지표하 단열상태를 파악하기 위해 5개 지점에 대한 시추작업을 실시하였고, 획득한 시추코아를 대상으로 정밀 검층을 실시해 단열과 파쇄대의 발달상황을 동정하였다. 한편, 단열과 교차하는 시추공벽의 이미지와 단열방향, 그리고 단열의 물리적 특성을 파악하기 위해 텔레뷰어 검층과 시추공 물리검층을 각각 실시했다. 이 자료들을 종합하면, 지표 하에 우세하게 발달하는 단열은 세 방향의 단열(B1, B2, 그리고 B3)이며, 이들은 각각 지표의 S1, S2, S4/S5 단열군에 해당하는 단열이다. B1 단열군은 실제로는 지표 하 암반에서 매우 조밀하게 발달할 것으로 예상되지만, 시추공과 이 방향 단열이 평행 내지 아평행한 관계로 시추공과의 교차빈도가 낮다. 투수성 단열을 추정한 바에 의하면, B1과 B3 방향의 단열들이 지하수 투수 가능성이 있고, 이들의 교차선도 주요 지하수 유동경로를 이루는 것으로 추정된다. 특히, 이 지역에서는 엽리면과 평행한 단층을 따른 지하수 유통이 가장 지배적인 것으로 판단된다.

  • PDF

NVIDIA Jetson TX1 기반의 사람 표정 판별을 위한 YOLO 모델 FPS 향상 방법 (YOLO Model FPS Enhancement Method for Determining Human Facial Expression based on NVIDIA Jetson TX1)

  • 배승주;최현준;정구민
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.467-474
    • /
    • 2019
  • 본 이 논문에서는 NVIDIA Jetson TX1에서 YOLO v2 모델의 정확도를 유지하면서 FPS를 개선하는 방법을 제안한다. 일반적으로, 딥러닝 모델에서는 연산량을 줄여 처리 속도를 높이기 위해 파라미터들을 실수형에서 정수형으로 변환하여 정수 연산을 통해 속도를 높이거나 네트워크의 깊이를 감소시키는 방법을 사용한다. 그러나 이 방법들은 인식 정확도가 떨어질 수 있다. 이 논문에서는 YOLO v2 모델을 이용해 표정인식기를 개발하고 정확도 유지 시키기 위해 정수 연산이나 네트워크 깊이 감소를 사용하는 대신, 다음 세 가지 방법을 통해 연산량 및 메모리 소모를 줄인다. 첫 번째, $3{\times}3$ 필터를 $1{\times}1$ 필터로 교체하여 각 Layer 당 매개 변수 수를 9 분의 1로 줄인다. 두 번째, TensorRT의 추론 가속 기능 중 CBR (Convolution-Add Bias-Relu)을 통해 연산량을 줄이고, 마지막으로 TensorRT를 사용하여 반복되는 동일한 연산구조를 가진 레이어를 통합하여 메모리 소비를 줄인다. 시뮬레이션 결과, 기존 YOLO v2 모델에 비해 정확도는 1 % 감소했지만 FPS는 기존 3.9 FPS에서 11 FPS로 282%의 속도 향상을 보였다.

딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰 (Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review)

  • ;조위덕
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권12호
    • /
    • pp.291-306
    • /
    • 2020
  • 오늘날 데이터 네트워크 AI (DNA) 기반 지능형 서비스 및 애플리케이션은 비즈니스의 삶의 질과 생산성을 향상시키는 새로운 차원의 서비스를 제공하는 것이 현실이 되었다. 인공지능(AI)은 IoT 데이터(IoT 장치에서 수집한 데이터)의 가치를 높이며, 사물 인터넷(IoT)은 AI의 학습 및 지능 기능을 촉진한다. 딥러닝을 사용하여 대량의 IoT 데이터에서 실시간으로 인사이트를 추출하려면 데이터가 생성되는 IoT 단말 장치에서의 처리능력이 필요하다. 그러나 딥러닝에는 IoT 최종 장치에서 사용할 수 없는 상당 수의 컴퓨팅 리소스가 필요하다. 이러한 문제는 처리를 위해 IoT 최종 장치에서 클라우드 데이터 센터로 대량의 데이터를 전송함으로써 해결되었다. 그러나 IoT 빅 데이터를 클라우드로 전송하면 엄청나게 높은 전송 지연과 주요 관심사인 개인 정보 보호 문제가 발생한다. 분산 컴퓨팅 노드가 IoT 최종 장치 가까이에 배치되는 엣지 컴퓨팅은 높은 계산 및 짧은 지연 시간 요구 사항을 충족하고 사용자의 개인 정보를 보호하는 실행 가능한 솔루션이다. 본 논문에서는 엣지 컴퓨팅 내에서 딥러닝을 활용하여 IoT 최종 장치에서 생성된 IoT 빅 데이터의 잠재력을 발휘하는 현재 상태에 대한 포괄적인 검토를 제공한다. 우리는 이것이 DNA 기반 지능형 서비스 및 애플리케이션 개발에 기여할 것이라고 본다. 엣지 컴퓨팅 플랫폼의 여러 노드에서 딥러닝 모델의 다양한 분산 교육 및 추론 아키텍처를 설명하고 엣지 컴퓨팅 환경과 네트워크 엣지에서 딥러닝이 유용할 수 있는 다양한 애플리케이션 도메인에서 딥러닝의 다양한 개인 정보 보호 접근 방식을 제공한다. 마지막으로 엣지 컴퓨팅 내에서 딥러닝을 활용하는 열린 문제와 과제에 대해 설명한다.

연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현 (Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar)

  • 김경민;김성진;남궁호정;정윤호
    • 한국항행학회논문지
    • /
    • 제26권4호
    • /
    • pp.211-218
    • /
    • 2022
  • 연속파 레이다는 카메라나 라이다와 같은 센서에 비해서 안정성과 정확성이 보장된다는 장점이 있다. 또한 이진 신경망은 다른 딥러닝 기술에 비해서 메모리 사용량과 연산 복잡도를 크게 줄일 수 있는 특징이 있다. 따라서 본 논문에서는 연속파 레이다와 이진 신경망 기반 사람 식별 및 동작 분류 시스템을 제안한다. 연속파 레이다 센서를 통해 수신된 신호를 단시간 푸리에 변환함으로써 스펙트로그램을 생성한다. 이 스펙트로그램을 기반으로 레이다를 향해 사람이 다가오는지 감지하는 알고리즘을 제안한다. 더불어, 최적화된 이진 신경망 모델을 설계하여 사람 식별 90.0%, 동작 분류 98.3%의 우수한 정확도를 지원할 수 있음을 확인하였다. 이진 신경망 연산을 가속하기 위해 FPGA (field programmable gate array)를 이용하여 이진 신경망 연산에 대한 하드웨어 가속기를 설계하였다. 해당 가속기는 1,030개의 로직, 836개의 레지스터, 334.906 Kbit의 블록 메모리를 사용하여 구현되었고, 추론에서 결과 전송까지 총 연산 시간이 6 ms로 실시간 동작이 가능함을 확인하였다.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF