• Title/Summary/Keyword: network control system

Search Result 5,321, Processing Time 0.033 seconds

Remote Controller Design of networked Control System Using Genetic Algorithm (유전자 알고리즘을 이용한 네트워크 기반 제어 시스템의 원격 제어기 설계)

  • Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 2002
  • As many sensors and actuators are used in automated systems, various industrial networks are adopted for digital control system. In order to take advantages of the networking, however, the network implementation should be carefully designed to satisfy real-time requirements considering network delays. This paper presents the implementation scheme of a networked control system via Profibus-DP network. More specifically, the effect of the network delay on the control performance was evaluated on a Profibus-DP testbed, and a GA-based PID tuning algorithm is proposed to design controllers suitable for networked control systems.

A Study of Web-based Remote Pneumatic Servo Control System Using Java Language (자바를 이용한 웹 기반 원격 공압 서보 제어 시스템에 관한 연구)

  • 박철오;안경관;송인성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.196-203
    • /
    • 2003
  • Recent increase in accessibility to the internet makes it easy to use the internet-connected devices. The internet could allow any user can reach and command any device that is connected to the network. But these teleoperation systems using the internet connected device have several problems such as the network time delay, data loss and development cost of an application for the communication with each other. One feasible solution is to use local and external network line for the network time delay, transmission control protocol for data loss and Java language to reduce the development period and cost. In this study, web-based remote control system using Java language is newly proposed and implemented to a pneumatic servo control system to solve the time delay, data loss and development cost. We have conducted several experiments using pneumatic rodless cylinder through the internet and verified that the proposed remote control system was very effective.

Internet Web-Based Rectifier Remote Control System Using SNMP (인터넷 웹 기반 환경에서의 정류기용 원격 제어 시스템)

  • Choi, Ju-Yeop;Oh, Young-Eun;Jeon, Ho-Suk;Song, Joong-Ho;Choi, Ik
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.88-92
    • /
    • 1999
  • This paper aims at developing remote contro system to control and monitor distributed various devices through internet or information communication network. SNMP (Simple Network Management Protocol) and rectifier operated in a row are adopted for network management protocol and applied device, respectively. For controlling and monitoring distributed devices in real-time java-environment software is constructed. Also general-use interface controller between network device and applied device is proposed. Finally, seria communication such as RS-232 and RS-485 is used between controller and applied device.

  • PDF

Position Control System using Neural Network Algorithm for Butterfly Valve (신경망 알고리즘을 이용한 버터플라이 밸브의 위치제어)

  • Choi, Jeong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.94-98
    • /
    • 2012
  • Butterfly valves are usually used by the plumbing systems in plant engineering field. Valves are used for controlling the flow rate and pressure of fluid. In order to control the flow rate using butterfly valve, the position control of valve disc should be designed. However, since there are lots of uncertain disturbance in plumbing system, the robust control system should be considered. Therefore, the sliding mode control system using neural network algorithm is proposed in this paper. The proposed control system provides the estimating method using neural network for the unmeasurable disturbance in the plumbing system. The performance of the proposed control system is evaluated through computer simulations.

Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.444-452
    • /
    • 2008
  • We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.

A Heterogeneous Home Network Control System Using HNCP

  • Jeon, Joseph;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1598-1601
    • /
    • 2005
  • In this paper, a heterogeneous home network control system using HNCP is proposed and implemented. A power line and 802.15.4 are used as media for the system. Information about home environment gathered by sensors is transferred to a power line connected device through the 802.15.4. HNCP stimulate the home network based on the both media. Sensor device definition for the HNCP address and message set is proposed. TinyOS supports the HNCP stack on the wireless sensor board. The home network control system implemented with these techniques has a benefit of user friendly operation of home appliances based on the sensing data. Implementation and experiment shows validity of the system.

  • PDF

A study on the audio/video integrated control system based on network

  • Lee, Seungwon;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • The recent development of information and communication technology is also affecting audio/video systems used in industry. The audio/video device configuration system changes from analog to digital, and the network-based audio/video system control has the advantage of reducing costs in accordance with system operation. However, audio/video systems released on the market have limitations in that they can only control their own products or can only be performed on specific platforms (Windows, Mac, Linux). This paper is a study on a device (Network Audio Video Integrated Control: NAVICS) that can integrate and control multiple audio / video devices with different functions, and can control digitalized audio / video devices through network and serial communication. As a result of the study, it was confirmed that individual control and integrated control were possible through the protocol provided by each audio/video device by NAVICS, and that even non-experts could easily control the audio/video system. In the future, it is expected that network-based audio/video integrated control technology will become the technical standard for complex audio/video system control.

Position Control of Nonlinear Crane Systems using Dynamic Neural Network (동적 신경회로망을 이용한 비선형 크레인 시스템의 위치제어)

  • Han, Seong-Hun;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.966-972
    • /
    • 2007
  • This paper presents position control of nonlinear three-dimensional crane systems using neural network approach. Such crane system generally includes very complicated characteristic dynamics and mechanical framework such that its mathematical model is expressed by strong nonlinearity. This leads difficulty in control design for the systems. We linearize the nonlinear system model to construct PID control applying well-known linear control theory and then neural network is utilized to compensate system perturbation due to linearization. Thus, control input of the crane system is composed of nominal PID and neural output signals respectively. Our method illustrates simple design procedure, but system perturbation and modelling error are overcome through a neural compensator. As well. adaptive neural control is constructed from online learning. Computer simulation demonstrates our control approach is superior to the classic control systems.

DISTRIBUTED CONTROL SYSTEM FOR KSTAR ICRF HEATING

  • Wang, Son-Jong;Kwak, Jong-Gu;Bae, Young-Dug;Kim, Sung-Kyu;Hwang, Churl-Kew
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.807-812
    • /
    • 2009
  • An ICRF discharge cleaning and a fast wave electron heating experiment were performed. For automated operation and providing the diagnostics of the ICRF system, the ICRF local network was designed and implemented. This internal network provides monitoring, RF protection, remote control, and RF diagnostics. All the functions of the control system were realized by customized DSP units. The DSP units were tied by a local network in parallel. Owing to the distributed feature of the control system, the ICRF local control system is quite flexible to maintain. Developing the subsystem is a more effective approach compared to developing a large controller that governs the entire system. During the first experimental campaign of the KSTAR tokamak, the control system operated as expected without any major problems that would affect the tokamak operation. The transmitter was protected from harmful over-voltage events through reliable operation of the system.

A PROPOSAL OF ENHANSED NEURAL NETWORK CONTROLLERS FOR MULTIPLE CONTROL SYSTEMS

  • Nakagawa, Tomoyuki;Inaba, Masaaki;Sugawara, Ken;Yoshihara, Ikuo;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.201-204
    • /
    • 1998
  • This paper presents a new construction method of candidate controllers using Multi-modal Neural Network(MNN). To improve a control performance of multiple controller, we construct, candidate controllers which consist of MNN. MNN can learn more complicated function than multilayer neural network. MNN consists of preprocessing module and neural network module. The preprocessing module transforms input signals into spectra which are used as input of the following neural network module. We apply the proposed method to multiple control system which controls the cart-pole balancing system and show the effectiveness of the proposed method.

  • PDF