• Title/Summary/Keyword: network control system

Search Result 5,346, Processing Time 0.035 seconds

Adaptive High-Order Neural Network Control of Induction Servomotor System (유도기 서보모터 시스템의 적응 고차 신경망 제어)

  • Kim, Do-Woo;Chung, Ki-Chull;Lee, Seng-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.650-653
    • /
    • 2005
  • In this paper, adaptive high-order neural network controller(AHONNC) is adopted to control an induction servomotor. A algorithm is developed by combining compensation control and high-order neural networks. Moreover, an adaptive bound estimation algorithm was proposed to estimate the bound of approximation error. The weight of the high-order neural network can be online tuned in the sense of the Lyapunov stability theorem; thus, the stability of the closed-loop system can be guaranteed. Simulation results for induction servomotor drive system are shown to confirm the validity of the proposed controller.

Inverted Cart Pendulum Control Using CAN(Controller Area Network) (CAN(Contro1ler Area Network)을 이용한 역진자 시스템 제어)

  • Choi, Seong-Seop;Yu, Lae-Sung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2242-2244
    • /
    • 2003
  • This paper considers a networked control system (NCS) that consists of an inverted cart pendulum, a digital controller, and a controller area network (CAN) in which the actuator and sensors of the pendulum are connected to form a closed-loop system. The worst-case message response time (WCMRT) in the CAN is analyzed and the analysis results are applied to the target control system. For the case where the control system cannot satisfy the WCMRT condition and therefore time delays are inevitable, the Luck and Ray method is used to compensate the network-induced time delays. Simulations are carried out to show the feasibility of the proposed scheme.

  • PDF

Robust control of nonlinear system using multilayer neural network (다층 신경회로망을 이용한 비선형 시스템의 견실한 제어)

  • 성홍석;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.41-49
    • /
    • 1997
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with disturbance a using multilayer neural network. The multilayer neural network can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate an unknown nonlinear system by using of multilayer neural netowrk. WE include a disturbance among the modelling error, and the weight-update rule of multilayer neural network is derived to satisfy Laypunov stability. The whole control system constitutes controller using the feedback linearization method. The weight of neural network which is used to implement nonlinear function is updated by the derived update-rule. The proposed control algorithm is verified through computer simulation.

  • PDF

A study on Using Web Browser for openness of Building Automation System (빌딩자동제어 시스템 개방화를 위한 Web 네트워크 활용방안)

  • 홍원표;이원규;박원국
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.163-168
    • /
    • 2000
  • This paper proposes the new concept & design method and implementation of LonWorks network system for remote monitoring & lighting dimming control and telemetry using Web network. The Experimental LonWorks network system for telemetry & remote monitoring and control are designed and fabricated. As a result, it is verified that LonWorks is open, interoperable, reliable network system from the experimental results, especially, it seamlessly links the data and control networks, allowing the IP(internet) network to be treated as an extension of the LonWorks networks, and vice versa.

  • PDF

Robust Control of Variable Hydraulic System using Multiple Fuzzy Rules (다수의 퍼지규칙을 이용한 가변유압시스템의 강건제어)

  • 양경춘;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.134-134
    • /
    • 2000
  • A switching control using multiple gains in the fuzzy rule is newly proposed for an abruptly changing hydraulic servo system. The proposed scheme employs fuzzy PID control, where modified input parameters are used, and LVQNN(Learning Vector Quantization Neural Network) as a switching controller (supervisor). Simulation and experimental studies have been carried out to validate and illustrate the proposed controller.

  • PDF

Secure Data Transmission Scheme between Network for Building Facilities Control System (빌딩시설 제어시스템용 안전한 망간 자료전송 방안)

  • Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.102-108
    • /
    • 2018
  • The existing data transmission technology applied between the non-secure external internet and the secure internal business network has various problems when applied to the building facility management SCADA system control network. Traditional inter-network data transfer technologies involve high complexity and high costs because blacklist-based security techniques are applied to all data. However, whitelist-based security techniques can be applied to data distributed in Building Facility Management SCADA control systems because a small number of structured control data are repeatable and periodic. This simplifies the security technology applied to inter-network data transmission, enabling building facility management SCADA system control network deployment at low cost. In this paper, we proposed building control networks specialized in building facility management SCADA control systems by providing solutions to address and address these problems.

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.

Design of Longitudinal Auto-landing Guidance and Control System Using Linear Controller-based Adaptive Neural Network

  • Choi, Si-Young;Ha, Cheol-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1624-1627
    • /
    • 2005
  • We proposed a design technique for auto-landing guidance and control system. This technique utilizes linear controller and neural network. Main features of this technique is to use conventional linear controller and compensate for the error coming from the model uncertainties and/or reference model mismatch. In this study, the multi-perceptron neural network with single hidden layer is adopted to compensate for the errors. Glide-slope capture logic for auto-landing guidance and control system is designed in this technique. From the simulation results, it is observed that the responses of velocity and pitch angle to commands are fairly good, which are directly related to control inputs of throttle and elevator, respectively.

  • PDF

A Study on Driving Control using Neural Network Identifier (신경회로망 동정기를 이용한 AGV의 주행제어에 관한 연구)

  • 이영진;이진우;손주한;최성욱;김한근;조현철;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.151-151
    • /
    • 2000
  • The objective of this paper is to develop the new robust and adaptive control system against external environments as applying the probabilistic recognition which is one of the inherent properties of immune system, ability of learning and memorization, and regulation theory of immune network to the system under engineering point of view. In this paper, HIA(Humoral Immune Algorithm) PID controller using Neural Network Identifier was proposed to drive the autonomous guided vehicle(AGV) more effectively. To verify the performance of the proposed HIA PID controller, some experiments for the control of steering and speed of that AGV are performed.

  • PDF

The speed control of induction motor using neural networks (신경회로망을 이용한 유도전동기 속도제어)

  • 김세찬;원충연
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.42-53
    • /
    • 1996
  • The paper presents a speed control system of vector controlled induct- ion motor using neural networks. The main feature of proposed speed control system is a Neural Network Controller(NNC) which supplies torque current to induction motor and Neural Network Emulator(NNE) which captures the forward dynamics of induction motor. A back propagation training algorithm is employed to train the NNE and NNC. In order to determine the NNC output error, plant(induction motor) output error can be back propagated through the NNE. The NNC and NNE for speed control of vector controlled induction motor is carried out by TMS320C30 DSP and IGBT current regulated PWM inverter. Through computer simulation and experimental results, it is verified that proposed speed control system is robust to the load variation. (author). refs., figs.

  • PDF