• Title/Summary/Keyword: network control system

Search Result 5,321, Processing Time 0.036 seconds

Design of a Communication Protocol for the Distributed Control System of the Nuclear Power Plants (원자력 발전소 분산제어시스템의 통신 프로토콜 설계)

  • 이성우;윤명현;문홍주;이병윤
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.143-148
    • /
    • 1999
  • A distributed real-time system that is being wed now is usually divided into three level : higher level, middle level, and lower level. The higher level network is usually called an information network, the middle level is called a control network, and the lower level is called a field network or a divice network. This dissertation suggests and implements a middle level network which is called PICNET-NP (Plant Implementation and Control Network for Nuclear Power Plant). PICNET-NP is based partly on IEEE 802.4 token-passing bus access method and partly on IEEE 802.3 physical layer. For this purpose a new interface, a physical layer service translator, is introduced. A control network using this method is implemented and applied to a distributed real-time system.

  • PDF

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF

A Study on Gantry Control using Neural Network Two Degree of PID Controller (신경회로망 2 자유도 PID 제어기를 이용한 갠트리 크레인제어에 관한 연구)

  • 최성욱;손주한;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.159-167
    • /
    • 2000
  • During the operation of crane system in the container yard, it is necessary to control the crane trolley position so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the crane system with disturbances and weight change. In this paper, we present the neural network two degree of freedom PID controller to control the swing motion and trolley position. Then we executed the computer simulation to verify the performance of the proposed controller and compared the performance of the neural network PID controller with our proposed controller in terms of the rope swing and the precision of position control. Computer simulation results show that the proposed controller has better performances than neural network PID with disturbances.

  • PDF

Implementation of a Fuzzy Control System for Two-Wheeled Inverted Pendulum Robot based on Artificial Neural Network (인공신경망에 기초한 이륜 역진자 로봇의 퍼지 제어시스템 구현)

  • Jeong, Geon-Wu;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • In this paper, a control system for two wheeled inverted pendulum robot is implemented to have more stable balancing capability than the conventional control system. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the control system are obtained for 3 specified weights using a trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the weight is arbitrarily selected. Through some experiments, we find that the proposed fuzzy control system using the neural network is superior to the conventional fuzzy control system.

Application of Neural Network for the Intelligent Control of Computer Aided Testing and Adjustment System (자동조정기능의 지능형제어를 위한 신경회로망 응용)

  • 구영모;이승구;이영민;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.79-89
    • /
    • 1993
  • This paper deals with a computer aided control of an adjustment process for the complete electronic devices by means of an application of artificial neural network and an implementation of neuro-controller for intelligent control. Multi-layer neural network model is employed as artificial neural network with the learning method of the error back propagation. Information initially available from real plant under control are the initial values of plant output, and the augmented plant input and its corresponding plant output at that time. For the intelligent control of adjustment process utilizing artificial neural network, the neural network emulator (NNE) and the neural network controller(NNC) are developed. The initial weights of each neural network are determined through off line learning for the given product and it is also employed to cope with environments of the another product by on line learning. Computer simulation, as well as the application to the real situation of proposed intelligent control system is investigated.

  • PDF

Sliding Mode Control using Neural Network for a Robot Manipulator (로봇 매니퓰레이터를 위한 신경회로망을 이용한 간편 슬라이딩 모드 제어)

  • 박윤명;박양수;최부귀
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.355-355
    • /
    • 2000
  • The position control accuracy of a robot manipulator is significantly deteriorated when a long arm robot is operated at a high speed. This paper presents a very simple sliding mode control which eliminates multiple mode residual vibration in a 개bot manipulator. The neural network is used to avoid that sliding mode condition is deviated due to the change of system parameter and disturbance. This paper is suggested control system which designed by sliding mode controller using neural network. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

Application of Controller Area Network to Humanoid Robot (휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용)

  • Ku, Ja-Bong;Huh, Uk-Youl;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF

Implementation of Automated Transfer Crane System using CAN Network (CAN 네트워크를 이용한 자동화 크레인 시스템의 구현)

  • Kim Man-Ho;Ha Kyoung-Nam;Lee Kyung-Chang;Hong Keum-Shik;Lee Suk
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.555-560
    • /
    • 2005
  • Recently, many control systems are replaced with digital control systems in an effort to optimize the overall performance. In order to operate these systems efficiently, the conventional point-to-point connection method must be changed to the signal exchange via a communication network. This paper investigates the technical feasibility of the crane system using CAN protocol which is a part NMEA 2000 by implementing a network-based control system emulating the crane control system.

Implementation of Home-Network Sewer using UPnP based on the Embedded Linux (Embedded Linux 기반의 UPnP를 사용한 홈-네트워크 서버 구현)

  • 정진규;진선일;이희정;황인영;홍석교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.638-643
    • /
    • 2004
  • Middleware enables different networking devices and protocols to inter-operate in ubiquitous home network environments. The UPnP(Universal Plug and Play) middleware, which runs on a PC and is based on the IPv4 protocol, has attracted much interest in the field of home network research since it has versatility The UPnP, however, cannot be easily accessed via the public Internet since the UPnP devices that provide services and the Control Points that control the devices are configured with non-routable local private or Auto IP networks. The critical question is how to access UPnP network via the public Internet. The purpose of this paper is to deal with the non-routability problem in local private and Auto IP networks by improving the conventional Control Point used in UPnP middleware-based home networks. For this purpose, this paper proposes an improved Control Point for accessing and controlling the home network from remote sites via the public Internet, by adding a web server to the conventional Control Point. The improved Control Point is implemented in an embedded GNU/Linux system running on an ARM9 platform. Also this paper implements the security of the home network system based on the UPnP (Universal Plug and Play), adding VPN (Virtual Private Network) router that uses the IPsec to the home network system which is consisted of the ARM9 and the Embedded Linux.