• Title/Summary/Keyword: network based system monitoring

Search Result 1,160, Processing Time 0.038 seconds

Characterization of Groundwater Level and Water Quality by Classification of Aquifer Types in South Korea (국내 대수층 유형 분류를 통한 지하수위와 수질의 특성화)

  • Lee, Jae Min;Ko, Kyung-Seok;Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • The National Groundwater Monitoring Network (NGMN) in South Korea has been implemented in alluvial/ bedrock aquifers for efficient management of groundwater resources. In this study, aquifer types were reclassified with unconfined and confined aquifers based on water-level fluctuation and water quality characteristics. Principal component analysis (PCA) of water-level data from paired monitoring wells of alluvial/bedrock aquifers results in the principal components of both aquifers showing similar water-level fluctuation pattern. There was no significant difference in the rate of water-level rises responding to precipitations and in the NO3-N concentrations between the alluvial and bedrock aquifers. In contrast, in the results classified with the hydrogeological type, the principal components of water level were different between unconfined and confined conditions. The water-level rises to precipitation events were estimated to be 4.6 (R2=0.8) in the unconfined and 2.1 (R2=0.4) in the confined aquifers, respectively, indicating less impact of precipitation recharge to the confined aquifer. The confined aquifers have the average NO3-N concentration below 3 mg/L, implying the natural background level protected from the sources at surface. In summary, reclassification of aquifers into hydrogeological types clearly shows the differences between unconfined and confined aquifers in the water-level fluctuation pattern and NO3-N concentrations. The hydrogeologic condition of aquifer could improve groundwater resource management by providing critical information on groundwater quantity through recharge estimation and quality for protection from potential contamination sources.

Ship Detection Based on KOMPSAT-5 SLC Image and AIS Data (KOMPSAT-5 SLC 영상과 AIS 데이터에 기반한 선박탐지)

  • Kim, Donghan;Lee, Yoon-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.365-377
    • /
    • 2020
  • Continuous monitoring and immediate response is essential to protect the national maritime territory and maritime resources from the activities of illegal ships. Synthetic Aperture Radar (SAR) images with a wide range of images are effective for maritime surveillance asthe weather and day-night conditions rarely affect to image acquisition. However, an effective ship detection is not easy due to the huge data size of SAR images and various characteristics such as the speckle noise. In this study, the Human Visual Attention System (HVAS) algorithm was applied to KOMPSAT-5 to extract the initial targets, and the SAR-Split algorithm depending on the imaging modes was used to remove false alarms. The detected targets were finally selected by the Constant False Alarm Rate (CFAR) algorithm and matched with the ship's Automatic Identification System (AIS) information. Overall, the detected targets were well matched with AIS data, but some false alarms by ship wakes were observed. The detection rate was about 80% in ES mode and about 64% in ST mode. It is expected that the developed ship detection algorithm will contribute to the construction of a wide area maritime surveillance network.

A Study on the Analysis of Factors for Carbon Neutrality Construction of Container Terminal in Gwangyang Port (광양항 컨테이너터미널의 탄소중립 구축을 위한 요인분석 연구)

  • Eun, Yong-Ju;Choi, Yong-seok
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.3
    • /
    • pp.115-130
    • /
    • 2024
  • This study was conducted to identify the relative importance of the decision factors that should be given priority in order for Gwangyang Port Container Terminal to transform into an eco-friendly port based on carbon neutrality. To this end, three upper decision factors and 12 lower decision factors were derived, and a survey was conducted targeting shipping port experts and port users. The priorities were identified using the Fuzzy-Analytic Hierarchy Process(Fuzzy-AHP) technique. As a result, the importance of the three upper priority factors was evaluated in the order of low-carbon infrastructure construction, legal system improvement, and operational management efficiency. As a result of the composite weight analysis calculated by multiplying the importance of the upper factor by the lower factor, the comprehensive combined importance of the 12 lower-level factors was highest in ① conversion to eco-friendly power such as existing unloading equipment, followed by ② expansion of renewable energy in ports, ③ introduction of energy-saving equipment and facilities, ④ establishment of a circular hydrogen sharing network in the Gwangyang Bay area, ⑤ establishment and implementation of a low-carbon port mid- to long-term strategy, ⑥ provision of incentives to users to achieve carbon neutrality, ⑦ implementation of regulatory measures such as a carbon burden system, ⑧ establishment of an eco-friendly port management system, ⑨ introduction of a mandatory AMP use system, ⑩ expansion of the low-speed operation program, ⑪ expansion of operation of a carbon-neutral working-level organization and education, and ⑫ greenhouse gas monitoring in ports and nearby areas. This study provided the basic basis and foundation through an analysis of the priority of decision factors for Gwangyang Port Container Terminal to leap forward as a global carbon-neutral port, and presented objective criteria for introduction decision factors that should be referenced by the government, local governments, port authorities, and shipping and port-related organizations.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Design of Authentication Mechinism for Command Message based on Double Hash Chains (이중 해시체인 기반의 명령어 메시지 인증 메커니즘 설계)

  • Park Wang Seok;Park Chang Seop
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2024
  • Although industrial control systems (ICSs) recently keep evolving with the introduction of Industrial IoT converging information technology (IT) and operational technology (OT), it also leads to a variety of threats and vulnerabilities, which was not experienced in the past ICS with no connection to the external network. Since various control command messages are sent to field devices of the ICS for the purpose of monitoring and controlling the operational processes, it is required to guarantee the message integrity as well as control center authentication. In case of the conventional message integrity codes and signature schemes based on symmetric keys and public keys, respectively, they are not suitable considering the asymmetry between the control center and field devices. Especially, compromised node attacks can be mounted against the symmetric-key-based schemes. In this paper, we propose message authentication scheme based on double hash chains constructed from cryptographic hash function without introducing other primitives, and then propose extension scheme using Merkle tree for multiple uses of the double hash chains. It is shown that the proposed scheme is much more efficient in computational complexity than other conventional schemes.

Countinuous k-Nearest Neighbor Query Processing Algorithm for Distributed Grid Scheme (분산 그리드 기법을 위한 연속 k-최근접 질의처리 알고리즘)

  • Kim, Young-Chang;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.3
    • /
    • pp.9-18
    • /
    • 2009
  • Recently, due to the advanced technologies of mobile devices and wireless communication, there are many studies on telematics and LBS(location-based service) applications. because moving objects usually move on spatial networks, their locations are updated frequently, leading to the degradation of retrieval performance. To manage the frequent updates of moving objects' locations in an efficient way, a new distributed grid scheme, called DS-GRID (distributed S-GRID), and k-NN(k-nearest neighbor) query processing algorithm was proposed[1]. However, the result of k-NN query processing technique may be invalidated as the location of query and moving objects are changed. Therefore, it is necessary to study on continuous k-NN query processing algorithm. In this paper, we propose both MCE-CKNN and MBP(Monitoring in Border Point)-CKNN algorithmss are S-GRID. The MCE-CKNN algorithm splits a query route into sub-routes based on cell and seproves retrieval performance by processing query in parallel way by. In addition, the MBP-CKNN algorithm stores POIs from the border points of each grid cells and seproves retrieval performance by decreasing the number of accesses to the adjacent cells. Finally, it is shown from the performance analysis that our CKNN algorithms achieves 15-53% better retrieval performance than the Kolahdouzan's algorithm.

  • PDF

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

A Comparative Study of Image Classification Method to Detect Water Body Based on UAS (UAS 기반의 수체탐지를 위한 영상분류기법 비교연구)

  • LEE, Geun-Sang;KIM, Seok-Gu;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.113-127
    • /
    • 2015
  • Recently, there has been a growing interest in UAS(Unmanned Aerial System), and it is required to develop techniques to effectively detect water body from the recorded images in order to implement flood monitoring using UAS. This study used a UAS with RGB and NIR+RG bands to achieve images, and applied supervised classification method to evaluate the accuracy of water body detection. Firstly, the result for accuracy in water body image classification by RGB images showed high Kappa coefficients of 0.791 and 0.783 for the artificial neural network and minimum distance method respectively, and the maximum likelihood method showed the lowest, 0.561. Moreover, in the evaluation of accuracy in water body image classification by NIR+RG images, the magalanobis and minimum distance method showed high values of 0.869 and 0.830 respectively, and in the artificial neural network method, it was very low as 0.779. Especially, RGB band revealed errors to classify trees or grasslands of Songsan amusement park as water body, but NIR+RG presented noticeable improvement in this matter. Therefore, it was concluded that images with NIR+RG band, compared those with RGB band, are more effective for detection of water body when the mahalanobis and minimum distance method were applied.

Energy Efficient Distributed Intrusion Detection Architecture using mHEED on Sensor Networks (센서 네트워크에서 mHEED를 이용한 에너지 효율적인 분산 침입탐지 구조)

  • Kim, Mi-Hui;Kim, Ji-Sun;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.151-164
    • /
    • 2009
  • The importance of sensor networks as a base of ubiquitous computing realization is being highlighted, and espicially the security is recognized as an important research isuue, because of their characteristics.Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop security Intrusion Detection System (IDS) that can survive malicious attacks from "insiders" who have access to keying materials or the full control of some nodes, taking their charateristics into consideration. In this perper, we design a distributed and adaptive IDS architecture on sensor networks, respecting both of energy efficiency and IDS efficiency. Utilizing a modified HEED algorithm, a clustering algorithm, distributed IDS nodes (dIDS) are selected according to node's residual energy and degree. Then the monitoring results of dIDSswith detection codes are transferred to dIDSs in next round, in order to perform consecutive and integrated IDS process and urgent report are sent through high priority messages. With the simulation we show that the superiorities of our architecture in the the efficiency, overhead, and detection capability view, in comparison with a recent existent research, adaptive IDS.