• Title/Summary/Keyword: net-zero

Search Result 214, Processing Time 0.024 seconds

Drought Stress Influences Photosynthesis and Water Relations Parameters of Synurus deltoides (건조스트레스가 수리취의 광합성 및 수분관련 특성에 미치는 영향)

  • Lee, Kyeong-Cheol;Lee, Hak Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.288-299
    • /
    • 2017
  • This study was conducted to find out the influence of drought stress on physiological responses of Synurus deltoides. Drought stress was induced by withholding water for 25 days. Leaf water potentials were decreased of both predawn (${\Psi}_{pd}$) and mid-day (${\Psi}_{mid}$) with increasing drought stress, but water saturation dificit (WSD) was 7 times increased. ${\Psi}_{pd}-{\Psi}_{mid}$ showed the significant difference of 0.22~0.18 MPa in stressed before 10 days, and nonsignificant as treatment time became longer. A strong reduction of stomatal conductance ($gH_2O$) and stomatal transpiration rate (E) were observed after 15 days of drought stress Significant reductions of net apparent quantum yield (${\Phi}$) and maximum photosynthesis rate ($Pn_{max}$) were observed after 20 days of drought stress; However, water use efficiency (WUE) was shown the opposite trend. This implies that decrease of photosynthesis rate may be due to an inability to regulate water and $CO_2$ exchanged through the stomata. From JIP analysis, flux ratios (${\Psi}_O$ and ${\Phi}_{EO}$) and performance index on absorption basis ($PI_{ABS}$) were dramatically decreased withholding water after 15 days, which reflects the relative reduction of photosystem II activity. The leaf of S. deltoides showed osmotic adjustment of -0.35 MPa at full turgor and -0.40 MPa at zero turgor, and also cell-wall elastic adjustment of 9.4 MPa, indicating that S. deltoides tolerate drought stress through osmotic adjustment and cell-wall elastic adjustment. The degree of change in water relations parameters such as Vo/DW, Vt/DW decreased with increasing drought stress. This result showed that S. deltoides was exhibited a strong reduction of photosynthetic activity to approximately -0.93 MPa of predawn leaf water potential, and both of osmotic adjustment and cell-wall elastic adjustment in drought stress condition appears to be an important adaptation for restoration in this species.

The Superconducting Properties of a High-Temperature Superconducting GdBCO-Coated Conductor (고온초전도 GdBCO 박막선재의 초전도 특성)

  • Yang, Seok Han;Song, Kyu Jeong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1293-1301
    • /
    • 2018
  • The basic magnetic properties of commercially available High-$T_c$ Superconductor (HTS) GdBCO-coated conductor (GdBCO-CCs) were investigated by using physical property measurement system-vibrating sample magnetometer (PPMS-VSM). From the zero-field-cooled (ZFC) m(T) curve, the $T_c$ was found to be ~93 K. After removing the background m(H) data, we obtained both the net m(H) data and the ${\Delta}m_{irr}$. The $H_{irr}(T)$ coincided very well with the power-law relation $H_{irr}=H_{irr}(0)(1-T/T_c)^n$ with $$n{\sim_=}1.19$$. The magnetic flux behavior was investigated by using the ${\delta}$ values in the relationship $J_c{\propto}{\Delta}m_{irr}{\propto}H^{-{\delta}}$. A ${\delta}{\approx}0$ region denoting an independent magnetic flux pinning effect, a ${\delta}{\approx}0.6{\sim}1.2$ region representing a collective flux pinning effect due to the interaction, and a ${\delta}{\gg}2$ region representing freely moving magnetic fluxes caused by the Lorentz force were observed. The boundary line between ${\delta}{\approx}0$ and ${\delta}{\approx}0.6{\sim}1.2$ is denoted by a $H_1$, and the one between ${\delta}{\approx}0.6{\sim}1.2$ and ${\delta}{\gg}2$ is denoted by a $H_2$. The ${\delta}(T)$ was obtained in the region of $H_1$ < H < $H_2$. As the temperature was decreased, the ${\delta}$ value gradually decreased.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

Development of Tree Carbon Calculator to Support Landscape Design for the Carbon Reduction (탄소저감설계 지원을 위한 수목 탄소계산기 개발 및 적용)

  • Ha, Jee-Ah;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.42-55
    • /
    • 2023
  • A methodology to predict the carbon performance of newly created urban greening plans is required as policies based on quantifying carbon performance are rapidly being introduced in the face of the climate crisis caused by global warming. This study developed a tree carbon calculator that can be used for carbon reduction designs in landscaping and attempted to verify its effectiveness in landscape design. For practical operability, MS Excel was selected as a format, and carbon absorption and storage by tree type and size were extracted from 93 representative species to reflect plant design characteristics. The database, including tree unit prices, was established to reflect cost limitations. A plantation experimental design to verify the performance of the tree carbon calculator was conducted by simulating the design of parks in the central region for four landscape design, and the causal relationship was analyzed by conducting semi-structured interviews before and after. As a result, carbon absorption and carbon storage in the design using the tree carbon calculator were about 17-82% and about 14-85% higher, respectively, compared to not using it. It was confirmed that the reason for the increase in carbon performance efficiency was that additional planting was actively carried out within a given budget, along with the replacement of excellent carbon performance species. Pre-interviews revealed that designers distrusted data and the burdens caused by new programs before using the arboreal carbon calculator but tended to change positively because of its usefulness and ease of use. In order to implement carbon reduction design in the landscaping field, it is necessary to develop it into a carbon calculator for trees and landscaping performance. This study is expected to present a useful direction for ntroducing carbon reduction designs based on quantitative data in landscape design.