• Title/Summary/Keyword: negative sequence

Search Result 555, Processing Time 0.025 seconds

Analysis of Instantaneous Voltage Compensator Using 3-Phase PWM Inverter (3상 PWM 인버터를 이용한 순간전압보상기의 해석)

  • 최연규;이승요;최규하;목형수;함형원
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.222-227
    • /
    • 1997
  • Unbalanced source voltages due to unbalanced loads in the 3-phase power system is decomposed into positive, negative and zero sequence components. Also, assuming there is no neutural path in the system, the zero sequence component is not shown. Therefore, it is possible to compensate unbalanced source voltage by canceling the negative sequency component of the voltages of the source. In this paper, an algorithm compensating unbalanced source voltages by canceling the negative sequence component is presented and analysis of instantaneous voltage compensator using 3-phase PWM inverter is carried out through computer simulation.

  • PDF

Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces (전기로용 다단 H-브릿지 STATCOM의 전류제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong;Kim, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.

Robust Circulating Current Control in MMC Under the Unbalanced Voltage Condition (불평형 전압 조건에 강인한 모듈형 멀티레벨 컨버터의 순환전류 억제기법)

  • Moon, Ji-Woo;Park, Jung-Woo;Kang, Dae-Wook;Kim, Jang-Mok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.996-997
    • /
    • 2015
  • This paper proposes parameter design principle of the sub-module capacitance, Arm inductance and a control method to reduced the circulating currents in modular multilevel converter(MMC) under unbalanced voltage conditions. Under balanced voltage conditions, only negative-sequence circulating currents exist. Consequently, the conventional method has considered only negative-sequence circulating currents in MMC. However, under unbalanced voltage conditions, there are positive-sequence, zero-sequence and negative-sequence circulating currents in MMC. Thus, under unbalanced voltage conditions, a control method should consider these all components. This study proposes the control method to reduced the circulating currents under the unbalanced voltage.

  • PDF

Negative Selection Algorithm for DNA Sequence Classification

  • Lee, Dong Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.231-235
    • /
    • 2004
  • According to revealing the DNA sequence of human and living things, it increases that a demand on a new computational processing method which utilizes DNA sequence information. In this paper we propose a classification algorithm based on negative selection of the immune system to classify DNA patterns. Negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes n group of antigenic receptor for n different patterns, they can classify into n patterns. In this paper we propose a pattern classification algorithm based on negative selection in nucleotide base level and amino acid level.

Cloning and Sequence Analysis of a Levansucrase Gene from Rahnella aquatilis ATCC15552

  • Kim, Hyun-Jin;Yang, Ji-Young;Lee, Hyeon-Gye;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.693-699
    • /
    • 2001
  • An intracellular levansucrase gene, lscR from Rahnella aquatilis ATCC 15552, was cloned and its nucleotide sequence was determined. Nucleotide sequence analysis of this gene revealed a 1,238 bp open reading frame coding for a protein of 415 amino acids. The levansucrase was expressed by using a T7 promoter in Escherichia coli BL21 (DE3) and the enzyme activity was detected in the cytoplasmic fraction. The optimum pH and temperature of this enzyme for levan formation was pH 6 and $30^{\circ}C$, respectively. The deduced amino acid sequence of the lscR gene showed a high sequence similarity (59-89%) with Gram-negative levansucrses, while the level of similarity with Gram-positive enzymes was less than 42%. Multiple alignments of levansucrase sequences reported from Gram-negative and Gram-positive bacteria revealed seven conserved regions. A comparison of the catalytic properties and deduced amino acid sequence of lscR with those of other bacterial levansucrases strongly suggest that Gram-negative and Gram-positive levansucrases have an overall different structure, but they have a similar structure at the active site.

  • PDF

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

Analysis and Control of Instantaneous Voltage Compensator Using New Phase Angle Detection Method Synchronized by Positive Sequence of Unbalanced 3-Phase Source (3상 불평형 전원 시스템의 새로운 위상각 검출기법을 이용한 순간전압보상기의 해석 및 제어)

  • 이승요;고재석;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.275-284
    • /
    • 1999
  • Unbalanced source voltage in the 3-phase power system is decomposed into positive, negative and zero sequence c components. Also, assuming there is no neutral path in the system, the zero sequence component is not shown on the l load side. Therefore, in the unbalanced power system without neutral path. it is possible to provide balanced voltage to t the load side by compensating negative sequence component and also to regulate the voltage amplitude by controlling t the positive sequence component. In addition, the symmetrical components due to voltage unbalance can be effectively d detected on the synchronous reference frame by using dlongleftarrowq transformation. In this paper, an algorithm not only c compensating unbalanced source voltage by canceling the negative sequence component on the synchronous reference f frame but also maintaining load voltages constantly is proposed. Also a novel method for phase angle detection s synchronized by positive sequence component under unbalanced source voltage is suggested and this detected phase a angle is used for d-q transformation. The performances and characteristics of the proposed compensating system are a analyzed by simulation and verified through experimental results.

  • PDF

Control of Circulating Current in Modular Multilevel Converter under Unbalanced Voltage using Proportional-Resonant Controller

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.143-144
    • /
    • 2016
  • The circulating current control within the phase legs is one of the main control objectives in a modular multilevel converter (MMC) under different operating conditions. This paper proposes a control strategy of circulating currents in the MMC under unbalanced voltage by using a proportional-resonant (PR) controller. Under the unbalanced voltage, the circulating currents in the MMC consists of three components such as positive-sequence, negative-sequence, and zero-sequence circulating currents. With the PR controller, all components of the circulating current will be directly controlled in the stationary reference frame without decomposing into positive- and negative-sequence components. Thus, the ripples in the circulating currents and the DC current are suppressed under the unbalanced voltage. The effectiveness of the proposed method is verified by simulation results based on PSCAD/EMTDC simulation program.

  • PDF

Identification of the Negative Regulatory Element on the Caprine $\beta$ Lactoglobulin Promoter (염소의 베타-락토글로불린 유전자 프로모터의 음성 조절 인자 규명)

  • 김재만;유명희
    • The Korean Journal of Zoology
    • /
    • v.38 no.3
    • /
    • pp.433-441
    • /
    • 1995
  • Mammary tissue-specificity of the caprine $\beta$-lactoglobulin promoter appears to be secured by repression in non-expressing cells. In order to identify the mechanism of the negative regulation, the upstream promoter sequence of the caprine $\beta$-lactoglobulin gene was analyzed in detail. The repression was mediated by the upstream flanking sequence from -47O to -205. The sequence could repress the promoter activity of $\beta$-lactoglobulin in either orientation. The effect of the putative negative regulation element of caprine $\beta$-lactoglobulin on heterlogous promoters, however, varied: the promoter activity of herpes simplex virus thimidine kinase was either repressed or activated by the sequence depending on its orientation, while the SV4O early promoter was activated rather than repressed. The regulatory sequence involving the putative negative regulatory element was strongly shifted with the nuclear extract from non-mammary HeLa and CV-1 cells, while only weak shift was observed with that of mammary HC11 cells. Such correlation between repression and factor binding suggests that the protected regions in foot-printing assay may be the negative regulatory elements of $\beta$-lactoalobulin that serve tissue-specific repression.

  • PDF

VPI-based Control Strategy for a Transformerless MMC-HVDC System Under Unbalanced Grid Conditions

  • Kim, Si-Hwan;Kim, June-Sung;Kim, Rae-Young;Cho, Jin-Tae;Kim, Seok-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2319-2328
    • /
    • 2018
  • This paper introduces a control method for a transformerless MMC-HVDC system. The proposed method can effectively control the grid currents of the MMC-HVDC system under unbalanced grid conditions such as a single line-to-ground fault. The proposed method controls the currents of the positive sequence component and the negative sequence component without separating algorithms. Therefore, complicated calculations for extracting the positive sequence and the negative sequence component are not required. In addition, a control method to regulate a zero sequence component current under unbalanced grid conditions in the transformerless MMC-HVDC system is also proposed. The validity of the proposed method is verified through PSCAD/EMTDC simulation.