• Title/Summary/Keyword: negative quadrant random variables

Search Result 25, Processing Time 0.019 seconds

A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUM OF LNQD RANDOM VARIABLES AND ITS APPLICATION

  • KIM, HYUN-CHULL;KIM, TAE-SUNG
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.531-538
    • /
    • 2005
  • In this paper we derive the central limit theorem for ${\sum}_{i=1}^n\;a_{ni}\xi_i$, where ${a_{ni},\;1\;{\leq}\;i\;{\leq}\;n}$ is a triangular array of nonnegative numbers such that $sup_n{\sum}_{i=1}^n\;a_{ni}^2\;<\;{\infty},\;max_{1{\leq}i{\leq}n}a_{ni}{\rightarrow}0\;as\;n\;{\rightarrow}\;{\infty}\;and\;\xi'_i\;s$ are a linearly negative quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process $X_n\;=\;\sum_{j=-\infty}^\infty\;a_k+_j{\xi}_j$.

ON ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF LNQD RANDOM VARIABLES

  • Choi, Jeong-Yeol;Kim, So-Youn;Baek, Jong-Il
    • Honam Mathematical Journal
    • /
    • v.34 no.2
    • /
    • pp.241-252
    • /
    • 2012
  • Let $\{X_{ni},\;1{\leq}i{\leq}n,\;n{\geq}1\}$ be a sequence of LNQD which are dominated randomly by another random variable X. We obtain the complete convergence and almost sure convergence of weighted sums ${\sum}^n_{i=1}a_{ni}X_{ni}$ for LNQD by using a new exponential inequality, where $\{a_{ni},\;1{\leq}i{\leq}n,\;n{\geq}1\}$ is an array of constants. As corollary, the results of some authors are extended from i.i.d. case to not necessarily identically LNQD case.

Power Comparison of Independence Test for the Farlie-Gumbel-Morgenstern Family

  • Amini, M.;Jabbari, H.;Mohtashami Borzadaran, G.R.;Azadbakhsh, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.493-505
    • /
    • 2010
  • Developing a test for independence of random variables X and Y against the alternative has an important role in statistical inference. Kochar and Gupta (1987) proposed a class of tests in view of Block and Basu (1974) model and compared the powers for sample sizes n = 8, 12. In this paper, we evaluate Kochar and Gupta (1987) class of tests for testing independence against quadrant dependence in absolutely continuous bivariate Farlie-Gambel-Morgenstern distribution, via a simulation study for sample sizes n = 6, 8, 10, 12, 16 and 20. Furthermore, we compare the power of the tests with that proposed by G$\ddot{u}$uven and Kotz (2008) based on the asymptotic distribution of the test statistics.

A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LPQD RANDOM VARIABLES AND ITS APPLICATION

  • Ko, Mi-Hwa;Kim, Hyun-Chull;Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.529-538
    • /
    • 2006
  • In this paper we derive the central limit theorem for ${\sum}^n_{i=l}\;a_{ni}{\xi}_{i},\;where\;\{a_{ni},\;1\;{\le}\;i\;{\le}n\}$ is a triangular array of non-negative numbers such that $sup_n{\sum}^n_{i=l}\;a^2_{ni}\;<\;{\infty},\;max_{1{\le}i{\le}n\;a_{ni}{\to}\;0\;as\;n{\to}{\infty}\;and\;{\xi}'_{i}s$ are a linearly positive quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process of the form $X_n\;=\;{\sum}^{\infty}_{j=-{\infty}}a_{k+j}{\xi}_{j}$.

On the Conditional Dependence Structure of Multivariate Random Variables

  • Baek, Jong-Il;Park, Sung-Tae;Chung, Sung-Mo;Lee, Gil-Hwan;Heo, Gil-Pyo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.513-524
    • /
    • 2006
  • In this paper, we introduce a new notions of conditionally weak dependence and we study their properties, preservation of the conditionally weak independent and positive and negative quadrant dependent(CWQD) property under mixtures, limits, closure under convex combinations, and their interrelationships. Furthermore, we extend multivariate stochastic dependence to stronger conditions of dependence.