• Title/Summary/Keyword: near-rings

검색결과 183건 처리시간 0.02초

EXAMPLES OF NEAR-RING NEUMANN SYSTEMS

  • McQuarrie, B.C.;Malone, J.J.
    • Kyungpook Mathematical Journal
    • /
    • 제28권1호
    • /
    • pp.39-44
    • /
    • 1988
  • In 1940, B. H. Neumann, working with a system more general than a near-field, proved that the additive group of such a system (and of a near-field) is commutative. The algebraic structure he used is known as a Neumann system (N-system). Here, the prime N-systems are classified and for each possible characteristic, examples of N-systems which are neither near-fields nor rings are given. It is also shown that a necessary condition for the set of all odd polynomials over GF(p) to be an N-system is that p is a Fermat prime.

  • PDF

수치모델 해상도가 중규모 와동 근처의 난류구조에 미치는 영향 (Effect of Model Resolution on The Flow Structures Near Mesoscale Eddies)

  • 장연식;안경모;박영규
    • 한국해안·해양공학회논문집
    • /
    • 제27권2호
    • /
    • pp.79-93
    • /
    • 2015
  • Gulf Stream 인근해역에서 해양 중규모 와동의 삼차원 구조분석을 HYCOM 수치모델을 사용하여 수행하였다. 시계방향 및 반시계 방향으로 회전하는 와동들의 구조를$1/12^{\circ}$$1/48^{\circ}$ 두개의 모델 해상도를 사용하여 비교하였다. 라그랑지안 모수인 Finite Size Lyapunov Exponent (FSLE) 와 Okubo-Weiss parameter(OW) 분포를 분석한 결과 표층의 와동구조가 수심 깊은 곳까지 영향을 미치는 것으로 나타났는데, 이는 와동에 의한 수평방향 해수운동이 수직방향 해수운동보다 크기 때문인 것으로 해석되었다. 고해상도 모델의 경우 와동근처에서 10 km 미만의 미세난류구조 들이 많이 발견되었으며, 이러한 미세난류구조들은 고해상도 모델의 와동근처에서 해수의 움직임을 저해상도 모델보다 불규칙하게 만드는 것으로 나타났다. 이러한 미세난류구조에 의한 해수의 불규칙한 움직임은 분산계수 (dispersion coefficient)에도 영향을 미치는데, 수평 분산계수의 경우 해수운동이 자유로운 고해상도 모델이 저해상도 모델보다 그 값이 더 크게 나타났다. 수직 분산계수의 값은 저해상도 모델에서 더 크게 나왔는데, 이는 와동의 경사진 궤도를 따라 움직이는 저해상도 모델의 해수운동이 수직 분산계수값을 증가시키기 때문인 것으로 들어났다. 상대 수직 분산계수의 경우 이러한 궤도의 영향이 줄어들기 때문에 해수의 수직운동을 측정하는데 있어 절대 수직 분산계수 보다 더 적합한 것으로 판명되었다.

PROPERTIES OF NOETHERIAN QUOTIENTS IN R-GROUPS

  • Cho, Yong Uk
    • 충청수학회지
    • /
    • 제20권2호
    • /
    • pp.183-190
    • /
    • 2007
  • In this paper, we will introduce the noetherian quotients in R-groups, and then investigate the related substructures of the near-ring R and G and the R-group G. Also, applying the annihilator concept in R-groups and d.g. near-rings, we will survey some properties of the substructures of R and G in monogenic R-groups and faithful R-groups.

  • PDF

ON SUBSTRUCTURES OF MONOGENIC R-GROUPS

  • Cho, Yong-Uk
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.401-406
    • /
    • 2008
  • In this paper, we will introduce the noetherian quotients in R-groups, and then investigate the related substructures of the near-ring R and G and the R-group G. Also, applying the annihilator concept in R-groups and d.g. near-rings, we will survey some properties of the substructures of R and G in monogenic Rgroups, and show that R becomes a ring for faithful monogenic R-groups with some condition.

  • PDF

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

LOWER AND UPPER FORMATION RADICAL OF NEAR-RINGS

  • Saxena, P.K.;Bhandari, M.C.
    • Kyungpook Mathematical Journal
    • /
    • 제19권2호
    • /
    • pp.205-211
    • /
    • 1979
  • In this paper we continue the study of formation radical (F-radical) classes initiated in [3]. Hereditary and stronger properties of F-radical classes are discussed by giving construction for lower hereditary, lower stronger and lower strongly hereditary F-radical classes containing a given class M. It is shown that the Baer F-radical B is the lower strongly hereditary F-radical class containing the class of all nilpotent ideals and it is the upper radical class with $\{(I,\;N){\mid}N{\in}C,\;N\;is\;prime\}{\subset}SB$ where SB denotes the semisimple F-radical class of B and C is an arbitrary but fixed class of homomorphically closed near-rings. The existence of a largest F-radical class contained in a given class is examined using the concept of complementary F-radical introduced by Scott [5].

  • PDF

O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구 (Drag Reduction of a Circular Cylinder With O-rings)

  • 임희창;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF

An Alternative Perspective of Near-rings of Polynomials and Power series

  • Shokuhifar, Fatemeh;Hashemi, Ebrahim;Alhevaz, Abdollah
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.437-453
    • /
    • 2022
  • Unlike for polynomial rings, the notion of multiplication for the near-ring of polynomials is the substitution operation. This leads to somewhat surprising results. Let S be an abelian left near-ring with identity. The relation ~ on S defined by letting a ~ b if and only if annS(a) = annS(b), is an equivalence relation. The compressed zero-divisor graph 𝚪E(S) of S is the undirected graph whose vertices are the equivalence classes induced by ~ on S other than [0]S and [1]S, in which two distinct vertices [a]S and [b]S are adjacent if and only if ab = 0 or ba = 0. In this paper, we are interested in studying the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials R0[x] and the near-ring of the power series R0[[x]] over a commutative ring R. Also, we give a complete characterization of the diameter of these two graphs. It is natural to try to find the relationship between diam(𝚪E(R0[x])) and diam(𝚪E(R0[[x]])). As a corollary, it is shown that for a reduced ring R, diam(𝚪E(R)) ≤ diam(𝚪E(R0[x])) ≤ diam(𝚪E(R0[[x]])).

A GENERALIZATION OF ARMENDARIZ AND NI PROPERTIES

  • Li, Dan;Piao, Zhelin;Yun, Sang Jo
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.741-750
    • /
    • 2018
  • Antoine showed that the properties of Armendariz and NI are independent of each other. The study of Armendariz and NI rings has been doing important roles in the research of zero-divisors in noncommutative ring theory. In this article we concern a new class of rings which generalizes both Armendariz and NI rings. The structure of such sort of ring is investigated in relation with near concepts and ordinary ring extensions. Necessary examples are examined in the procedure.