• Title/Summary/Keyword: near-minimum-time

Search Result 160, Processing Time 0.032 seconds

A Study on Pressure Distributions in a Centrifugal Compressor Channel Diffuser (원심압축기 채널디퓨저 내부의 압력분포에 관한 연구)

  • Gang, Jeong-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.507-513
    • /
    • 2001
  • Time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates are investigated. Pressure distributions from the impeller exit to the channel diffuser exit are measured for various flow rates from choke to near surge condition, and the effects of operating condition are discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

A Study on the Pressure Distribution in the Centrifugal Compressor Channel Diffuser at Design and Off-Design Conditions (설계 및 탈설계점에서의 원심압축기 채널디퓨저 내부의 압력분포에 관한 연구)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.548-554
    • /
    • 2000
  • The aim of this paper is to understand the time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates. Pressure distributions from the impeller exit to the channel diffuser exit are measured and discussed far various flow rates from choke to near surge condition, and the effect of operating condition is discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

  • PDF

A Study on Proper Minimum Navigation Speed Control in the Korean Ports (우리나라 항만에서의 항행 최저속력 규제에 관한 연구)

  • Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Navigation speed control is an important factor to improve the traffic safety, it is only researched about maximum speed control until now. Recently, there are lots of the low speed vessels including towing boats, carry heavy shipbuilding blocks in the Korean waters, so the danger degree of navigating vessels was increasing more and more. This paper analysed the effectiveness of minimum speed control with the operation burden's decrease, and it proposed the proper the minimum navigation speed of each traffic volume. Main results of this research are as follows. (1) in the case of 5 ships/hour, minimum speed control is effective if the lowest speed is fixed more than 5kts. (2) in the case of more than 10 ships/hour, speed control is some effective if the lowest speed is established 7kts. (3) But, when there are many ships in the waters, minimum speed control is not effective because distances between ships become near and ships navigate for a long time by a lot of ship having a few difference of relative speed.

Inter-Sector Beamforming with MMSE Receiver in the Downlink of TDD Cellular Systems

  • Yeom, Jae-Heung;Lee, Yong-Hwan
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.118-126
    • /
    • 2008
  • The use of beamforming is effective for users in limited power environments. However, when it is applied to the downlink of a cellular system with universal frequency reuse, users near the sector boundary may experience significant interference from more than one sector. The use of a minimum mean square error (MMSE)-type receiver may not sufficiently cancel out the interference unless a sufficient number of receive antennas are used. In this paper, we consider the use of inter-sector beamforming that cooperates with a neighboring sector in the same cell to mitigate this interference problem in time-division duplex (TDD) environments. The proposed scheme can avoid interference from an adjacent sector in the same cell, while enhancing the transmit array gain by using the TDD reciprocity. The performance of the proposed scheme is analyzed in terms of the output signal-to-interference-plus-noise power ratio (SINR) and the output capacity when applied to an MMSE-type receiver. The beamforming mode can be analytically switched between the inter-sector and the single-sector mode based on the long-term channel information. Finally, the effectiveness of the proposed scheme is verified by computer simulation.

Long-term analysis of tropospheric delay and ambiguity resolution rate of GPS data

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.673-680
    • /
    • 2012
  • Long-term GPS data analysis was performed in order to analyze the seasonal variation of tropospheric delay and the success rate of the ambiguity resolution. For this analysis, a total of 57 stations including 10 IGS stations in East Asia were processed together with double-differenced observables using Bernese GPS Software V5.0. The time span for this study ranges from 2002.0 to 2012.5 (10.5 years). The average baseline length is 339.0 km and the maximum reaches up to 2,000 km. The analysis is focused on two things: the annual variation of the tropospheric delay and the ambiguity resolution rate. The tropospheric delay is closely related to the weather condition, especially relative humidity, therefore it was estimated that the maximum would be in summer, while reaching its minimum in winter with the apparent seasonal variations. On the contrary, however, the success rate of the ambiguity resolution shows the opposite pattern: its maximum was in winter and minimum in summer. The fact seems to be induced by the surrounding conditions; that is, the trees thick with leaves near the GPS antenna interfere with GPS signals in summer. This seems to confirm partly that there is a distinct trend in the decreasing success rate since 2006 because the trees are growing every year. It is necessary to eliminate the factors that degrade the GPS quality and the tropospheric modeling for Korea needs to be studied further.

Time-Series Interferometric Synthetic Aperture Radar Based on Permanent Scatterers Used to Analyze Ground Stability Near a Deep Underground Expressway Under Construction in Busan, South Korea (고정산란체 기반 시계열 영상레이더 간섭기법을 활용한 부산 대심도 지하 고속화도로 건설 구간의 지반 안정성 분석)

  • Taewook Kim;Hyangsun Han;Siung Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.689-699
    • /
    • 2023
  • Assessing ground stability is critical to the construction of underground transportation infrastructure. Surface displacement is a key indicator of ground stability, and can be measured using interferometric synthetic aperture radar (InSAR). This study measured time-series surface displacement using permanent scatterer InSAR applied to Sentinel-1 SAR images acquired from January 2017 to June 2023 for the area around a deep underground expressway under construction to connect Mandeok-dong and Centum City in Busan, South Korea. Regions of seasonal subsidence and uplift were identified, as were regions with severe subsidence after summer 2022. To evaluate stability of the ground in the construction area, the mean displacement velocity, final surface displacement, cumulative surface displacement, and difference between minimum and maximum surface displacement were analyzed. Considering the time-series surface displacement characteristics of the study area, the difference between minimum and maximum surface displacement since June 2022 was found to be the most suitable parameter for evaluating ground stability. The results identified highly unstable ground in the construction area as being to the north of the mid-lower reaches of the Oncheon-cheon River and to the west of the Suyeong River at the point where both rivers meet, with the difference between minimum and maximum surface displacement of 40~60 mm.

A Near Minimum-Time Trajectory Planning for Two Robots Using Dynamic Programming Technique (다이나믹 프로그래밍에 의한 두 대의 로보트를 위한 최소시간 경로계획)

  • 이지홍;오영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.36-45
    • /
    • 1992
  • A numerical trajectory planning method for path-constrained trajectory planning is proposed which ensures collision-free and time-optimal motions for two robotic manipulators with limited actuator torques and velocities. For each robot, physical constraints of the robots such as limited torques or limited rotational velocities of the actuators are converted to the constraints on velocity and acceleration along the path, which is described by a scalar variable denoting the traveled distance from starting point. Collision region is determined on the coordination space according to the kinematic structures and the geometry of the paths of the robots. An Extended Coordination Space is then constructed` an element of the space determines the postures and the velocities of the robots, and all the constraints described before are transformed to some constraints on the behaviour of the coordination-velocity curves in the space. A dynamic programming technique is them provided with on the discretized Extended Coordination Space to derive a collision-free and time-optimal trajectory pair. Numerical example is included.

  • PDF

Low Pilot Ratio Channel Estimation for OFDM Systems Based on GCE-BEM

  • Wang, Lidong;Lim, Dong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.195-200
    • /
    • 2007
  • Doubly-selective channel estimator for orthogonal frequency division multiplexing(OFDM) systems is proposed in this paper. Based on the generalized complex exponential basis expansion model(GCE-BEM), we describe the time-variant channel with time-invariant coefficients over multiple OFDM blocks. The time variation of the channel destroys the orthogonality between subcarriers, and the resulting channel matrix in the frequency domain is no longer diagonal, but the main interference comes from the near subcarriers. Based on this, we propose a channel estimator with low pilot ratio. We first develop a least-square(LS) estimator under the assumption that only the maximum Doppler frequency and the channel order are known at the receiver, and then verify that the correlation matrix of inter-channel interference(ICI) is a scaled identity matrix based on which we derive an optimal pilot insertion scheme for the LS estimator in the sense of minimum mean square error. The proposed estimator has the advantages of low pilot ratio and robustness against inter-carrier interference.

Use of Near Infrared Spectroscopy in the Meat Industry

  • Akselsen, Thorvald M.
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2000.11a
    • /
    • pp.1-14
    • /
    • 2000
  • The Near Infrared region of the energy spectrum was first discovered by Hershel in the year 1800. The principles of NIR is based on light absorption of specific organic chemical bonds. The absorption at each wavelength is measured and a spectre is obtained. The spectre is then treated mathematically and with the absorption data is converted to absolute units via a calibration. In the last two decades it has developed dramatically. With the invention of computers and the ability to treat a large amount of data in a very short time the use of NIR for many different purposes has developed very fast. During the last decade with the aid of very powerful PC's the application of NIR technology has become even more widespread. Now or days development of very robust calibrations can be done in a relatively short time with a minimum of resources. The use of Near Infrared Spectroscopy (NIR) in the Meat industry is relatively new. The first installations were taken into operation in the 80ties. The Meat Industry in often referred to as rather conservative and slow to embrace new technologies, they stay with the old and proven methods. The first NIR instruments used by the Meat Industry, and most other industries, were multipurpose build, which means that the sample presentation was not well suited to this particular application, or many other applications for that sake. As the Meat Industry grows and develops to meet the demands of the modern markets, they realise the need for better control of processes and final products. From the early 90 ties and onward the demand for 'rear time' rapid results starts growing, and some suppliers of NIR instruments (and instruments based on other technologies, like X-ray) start to develop and manufacture instrumentation dedicated to the particular needs of the Meat Industry. Today it is estimated that there are approximately 2000 rapid instruments placed in the Meat industry world-wide. By far most of these are used as at-line or laboratory installations, but the trend and need is moving towards real on-line or in-line solutions. NIR is the most cost effective and reproducible analytical procedure available for the twenty first century.

  • PDF

Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

  • Hwang, Jun-Ga;Choi, Kyu-Cheol;Lee, Jae-Jin;Park, Young-Deuk;Ha, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.173-181
    • /
    • 2011
  • Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28) a minimum appears and the time after about 3 hours and 30 minutes (15:28) a maximum appears. Also, a quiet interval start time (19:06) is near the sunset time, and a quiet interval end time (06:40) is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947), and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.