• Title/Summary/Keyword: near-infrared spectroscopy(NIRS)

Search Result 221, Processing Time 0.025 seconds

Rapid Determination of Ascorbic Acid in Red Pepper Leaves by Near-Infrared Reflectance Spectroscopic Analysis (근적외 분광분석법에 의한 고춧잎의 Ascorbic Acid 함량 측정)

    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.393-398
    • /
    • 1998
  • The loss of ascorbic acid in dried red pepper leaves prepare with different drying methods of air-, oven-, microwave oven-, and vacuum drying with blanching or without was determined by a HPLC method. Vacuum drying showed the least loss of ascorbic acid than the other drying methods. Additionally, the feasibility of near infrared reflectance spectroscopy(NIRS) to determine the contents of ascorbic acid in the red pepper leaves was studied. NIRS was found to be an efficient way of determining ascorbic acid contents in red pepper leaves, requiring only 30 seconds of an analytical time.

  • PDF

Quantification of Icariin Contents in Epimedium koreanum N. by Using a Near Infrared Reflectance Spectroscopy (NIRS를 이용한 삼지구엽초의 이카린 함량 분석)

  • Kim, Yong-Ho;Choi, Byoung-Ryourl;Baek, Hum-Young;Lee, Young-Sang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.5
    • /
    • pp.340-343
    • /
    • 2002
  • Near infrared reflectance spectroscopy (NIRS) has become widely accepted for rapid quantitative analysis of components in some crops. Our object was to determine icariin contents in whole plant of Epimedium koreanum by using an NIRS system. Total 150 plant samples previously analyzed by HPLC were scanned by NIRS and 68 samples were selected for calibration and validation equation. A calibration equation calculated by MPLS(modified partial least squares) regression technique was developed and a coefficient of determination in calibration and validation sets were 0.95 and 0.82, respectively. A comparison between NIRS estimation and HPLC value was performed with the remaining samples not included in the calibration and validation sets. Most of samples also showed a positive correlation like a validation set. Our results demonstrate that this developed NIRS equation can be practically used as a mass screening method for rapid quantification of icarin contents in Epimedium koreanum N.

Vitamin C Tablet Assay by Near -Infrared Reflectance spectrometry

  • Kargosha, Kazem;Ahmadi, Hamid;Nemati, Nader
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4111-4111
    • /
    • 2001
  • When a drug is prepared in a tablet, the active component represents only a small portion of the dosage form. The other components of the formulation include materials to assist in the dissolution, antioxidants, coloring agents and bulk fillers. The tablets are tested using approved testing methods usually involving separation and subsequent quantification of the active component. Tablets may also be tested by near-Infrared Reflectance spectrometry (NIRS). In the present study, based on NIRS and multivariate calibration methods, a novel and precise method is developed for direct determination of ascorbic acid in vitamin C tablet. Two different tablet formulations were powdered in three different sizes, 63-125 ${\mu}{\textrm}{m}$, and examined. Spectral region of 4750-4950 $cm^{-1}$ / was used and optimized for quantitative operations. Partial least squares (PLS) and multiple linear regression (MLR) methods were performed for this spectral region. The results of optimized PLS and MLR methods showed that reproducibility increase with decreasing grain size and standard error of calibration (SEP) of less than 1% w/w of ascorbic acid and a correlation coefficient of 0.998 can be achieved. The PLS method showed better results than MLR. Seven overdose and underdose samples (prepared in the laboratory to match marketed products) were tested by proposed and iodometric standard methods. A correlation between NIRS predicted ascorbic acid values and iodomet.ic values was calculated ($R^2$=0.9950). Finally, the direct analysis of individual intact tablets in their unit-dose packages (Blistering in aluminum and PVC foils) obtained from market were also carried out and a correlation coefficient of 0.9989 and SEP of 0.931% w/w of ascorbic acid were achieved.

  • PDF

Establishment of a Nondestructive Analysis Method for Lignan Content in Sesame using Near Infrared Reflectance Spectroscopy (근적외선분광(NIRS)을 이용한 참깨의 lignan 함량 비파괴 분석 방법 확립)

  • Lee, Jeongeun;Kim, Sung-Up;Lee, Myoung-Hee;Kim, Jung-In;Oh, Eun-Young;Kim, Sang-Woo;Kim, MinYoung;Park, Jae-Eun;Cho, Kwang-Soo;Oh, Ki-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Sesamin and sesamolin are major lignan components with a wide range of potential biological activities of sesame seeds. Near infrared reflectance spectroscopy (NIRS) is a rapid and non-destructive analysis method widely used for the quantitative determination of major components in many agricultural products. This study was conducted to develop a screening method to determine the lignan contents for sesame breeding. Sesamin and sesamolin contents of 482 sesame samples ranged from 0.03-14.40 mg/g and 0.10-3.79 mg/g with an average of 4.93 mg/g and 1.74 mg/g, respectively. Each sample was scanned using NIRS and calculated for the calibration and validation equations. The optimal performance calibration model was obtained from the original spectra using partial least squares (PLS). The coefficient of determination in calibration (R2) and standard error of calibration (SEC) were 0.963 and 0.861 for sesamin and 0.875 and 0.292 for sesamolin, respectively. Cross-validation results of the NIRS equation showed an R2 of 0.889 in the prediction for sesamin and 0.781 for sesamolin and a standard error of cross-validation (SECV) of 1.163 for sesamin and 0.417 for sesamolin. The results showed that the NIRS equation for sesamin and sesamolin could be effective in selecting high lignan sesame lines in early generations of sesame breeding.

IDENTIFICATION OF FALSIFIED DRUGS USING NEAR-INFRARED SPECTROSCOPY

  • Scafi, Sergio H.F.;Pasquini, Celio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3112-3112
    • /
    • 2001
  • Near-Infrared Spectroscopy (NIRS) was investigated aiming at the identification of falsified drugs. The identification is based on comparison of the NIR spectrum of a sample with a typical spectra of an authentic drug using multivariate modelling and classification algorithms (PCA/SIMCA). Two spectrophotometers (Brimrose - Luminar 2000 and 2030), based on acoustic-optical filter (AOTF) technology, sharing the same controlling computer, software (Brimrose - Snap 2.03) and the data acquisition electronics, were employed. The Luminar 2000 scans the range 850 1800 nm and was employed for transmitance/absorbance measurements of liquids with a transflectance optical bundle probe with total optical path of 5 mm and a circular area of 0.5 $\textrm{cm}^2$. Model 2030 scans the rage 1100 2400 nm and was employed for reflectance measurement of solids drugs. 300 spectra, acquired in about 20 s, were averaged for each sample. Chemometric treatment of the spectral data, modelling and classification were performed by using the Unscrambler 7.5 software (CAMO Norway). This package provides the Principal Component Analysis (PCA) and SIMCA algorithms, used for modelling and classification, respectively. Initially, NIRS was evaluated for spectrum acquisition of various drugs, selected in order to accomplish the diversity of physico-chemical characteristics found among commercial products. Parameters which could affect the spectra of a given drug (especially if presented as solid tablets) were investigated and the results showed that the first derivative can minimize spectral changes associated with tablet geometry, physical differences in their faces and position in relation to the probe beam. The effect of ambient humidity and temperature were also investigated. The first factor needs to be controlled for model construction because the ambient humidity can cause spectral alterations that should cause the wrong classification of a real drug if the factor is not considered by the model.

  • PDF

Relationship between Near Infrared Reflectance Spectra and Mechanical Sensory Score of Commercial Brand Rice Produced in Jeonbuk (전북산 브랜드 쌀의 근적외선 분광스펙트럼과 기계적 식미치간의 상호관계)

  • Song, Young-Ju;Song, Young-Eun;Oh, Nam-Ki;Choi, Yeong-Geun;Cho, Kyu-Cha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.42-46
    • /
    • 2006
  • The purpose of this study was to assess whether mechanical sensory score by Toyo Midometer can be substituted by near-infrared spectroscopy (NIRS) method in whole-grain milled rice samples. Toyo values of collected commercial brand rice (n=127) had comparatively wide ranges from 62.9 to 84.2 (Mean=70.5; S.D.=4.0). Calibration equation was developed using 73 samples. Standard error of calibration (SEC) for sensory score equation and $R^2$ were 0.95, and 0.94, respectively, however, percentage of variation in the reference method values (1-VR) which give a true indication of equation performance was slightly lower (1-VR=0.81) than calibration equation. It was demonstrated that, even though NIRS has potential as a rapid tools to predict rice sensory score, the prediction of sensory score in rice by NIRS needs to be further investigation on a large number of sample with different varieties and growing locations.

Rapid and Nondestructive Discrimination of Fusarium Asiaticum and Fusarium Graminearum in Hulled Barley (Hordeum vulgare L.) Using Near-Infrared Spectroscopy

  • Lim, Jong Guk;Kim, Gi Young;Mo, Chang Yeun;Oh, Kyoung Min;Kim, Geon Seob;Yoo, Hyeon Chae;Ham, Hyeon Heui;Kim, Young Tae;Kim, Seong Min;Kim, Moon S.
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.301-313
    • /
    • 2017
  • Purpose: This study was conducted to discriminate between normal hulled barley and Fusarium (Fusarium asiaticum and Fusarium graminearum) infected hulled barley by using the near-infrared spectroscopy (NIRS) technique. Methods: Fusarium asiaticum and Fusarium graminearum were artificially inoculated in hulled barley and the reflectance spectrum of the barley spike was obtained by using a near-infrared spectral sensor with wavelength band in the range 1,175-2,170 nm. After obtaining the spectrum of the specimen, the hulled barley was cultivated in a greenhouse and visually inspected for infections. Results: From a partial least squares discriminant analysis (PLS-DA) prediction model developed from the raw spectrum data of the hulled barley, the discrimination accuracy for the normal and infected hulled barley was 99.82% (563/564) and 100% (672/672), respectively. Conclusions: NIRS is effective as a quick and nondestructive method to detect whether hulled barley has been infected with Fusarium. Further, it expected that NIRS will be able to detect Fusarium infections in other grains as well.

Rapid Quality Evaluation of Dried Red Pepper by Near-infrared Spectroscopy (근적외 분광분석법에 의한 건조고추의 품질측정)

  • Cho, Rae-Kwang;Hong, Jin-Hwan;Kim, Hyun-Koo;Park, Moo-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 1990
  • A near-infrared reflectance spectroscopic(NIRS) method which has been recently developed for a non-destructive method for measuring ingredients in foods and agricultural products especially was evaluated for the determination of capsanthin, total sugar, capsaicin and moisture contents in Korean domestic red peppers. A multiple linear regression analysis with the data obtained by standard-laboratory methods(capsaicin by GC, capsanthin by Colorimetry, total sugar by HPLC and moisture by Vacuum drying method) and NIRS method was carried out to make a calibration. The accuracy of the NIRS method was found to be adequate when the standard-laboratory values for a set of sample that were not included in the calibration, were compared. It is concluded that the NIRS method is suitable for the determination of total sugar and capsanthin.

  • PDF

Preliminary study on the use of near infrared spectroscopy for determination of plasma deuterium oxide in dairy cattle

  • Purnomoadi, Agung;Nonaka, Itoko;Higuchi, Kouji;Enishi, Osamu;Amari, Masahiro;Terada, Fuminori
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4101-4101
    • /
    • 2001
  • Information of body composition (fat and protein) in living animal is important to determine the nutrients requirement. Deuterium oxide (D2O) dilution techniques, as one of isotope dilution techniques have been useful for the prediction of body composition. However, the determination of D2O concentration is time consuming and complicated. Therefore this study was conducted to develop a new method to predict D2O concentration in plasma using near infrared spectroscopy technique (NIRS). Four dairy cows in early lactation were used. They were fed total mixed ration containing conr silage, timothy hay, and concentrates to make 17.0%CP and 14.0 MJDE/kgDM. Dosing D2O was at week 1,3 and 5 after parturition. After dosing D2O, the blood was collected from hour 0 to 72. Blood samples were then centrifuge at 3,000 rpm for 10 minutes to obtain plasma. D2O concentration was analyzed by gas chromatograph (deuterium oxide analyzable system, HK102, Shokotsusyou) after extracted from plasma by liophilization. Plasma sample was scanned by NIRS using Pacific Scientific (Neotec) model 6500 (Perstorp Analytical, Silver Spring, MD) in the range of wavelength from 1100 to 2500 nm. Calibration equation was developed using multiple linear regression. Sample from one animal (cow #550; n: 74) was used for developing the calibration while the rest three animals were used for validating the equation. The range, R and SEC of the calibration set samples were 135-925 ppm, 0.93 and 48.1 ppm, respectively. Validation of the calibration equation for three individual cows was done and the average of NIR predicted value of D2O at each collection time from three weeks injection showed a high correlation. The range, r and 53 of plasma from cow #474 were 322-840 ppm,0.93 and 53.1; cow #478 were 146-951 ppm,0.95 and 39.8; cow #942 were 313-885 ppm,0.95 and 37.2, respectively. Judgement of accuracy based on ratio of standard deviation and standard error in validation set samples (RPD) for cow #474, #478 and #942 were 2.2,4.3 and 3.4, respectively. The error in application due to the variation between individual was considered smaller than the bias from collection period, however, this prediction can be overcome with correction of standard zero-minute concentration of blood. The results of this preliminary study on the use of NIRS for determination of D2O in plasma showed very promising as shown by a convenient and satisfy accuracy. Further study on various physiological stage of animal should be done.

  • PDF

Compositional analysis by NIRS diode array instrumentation on forage harvesters

  • Andreashaeusler, Michael Rode;Christian, Paul
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1619-1619
    • /
    • 2001
  • Ourwork aims to assess the content of dry matter, protein, cell wall parameters and water soluble carbohydrates in forages without having to handle samples, transport them to a laboratory, dry, grind and chemically analyze them. for this purpose, the concept of fresh forage analysis under field conditions by means of compact integrated NIRS InGaAs-diode array instruments on small plot harvesters is being evaluated for plant breeding trials. This work was performed with the world first commercial experimental forage plot harvester equipped with a NIRS module for the collection, compression, and scanning of forage samples (including automatic referencing and dark current measure ments). It was used for harvesting and analyzing a number of typical forage grass and forage legume plot trials. After NIRS measurements in the field each sample was again analyzed in the laboratory by means of a conventional grating spectrometer equipped with Si-and PbS-detectors. Conventional laboratory analysis of the samples was restricted to dry matter (DM) content by means of oven drying at 105. Routine chemometric procedures were then employed to assess the comparative accuracy and precision of the DM assessments in the spectral range between 950 and 1650nm by the NIRS diode array as well as by the conventional NIRS scanning instrument. The results of this study confirmed that the type of NIRS diode array instrument employed here functioned well even in rugged field operations. further refinements proved to be necessary for optimizing the automatic filling of the sample compartment to adjust for the wide variation in forage material under conditions of extremely low or high harvest yields. The error achieved in calibrating the apparatus for forages of typical DM content proved to be satisfactory (SECV < 1.0). Possibly as a consequence of higher sampling errors, its performance in atypical forages with elevated DM contents was less satisfactory. The error level obtained on the conventional grating NIR spectrometer was similar to that of the diode array instrument for both types of forage.

  • PDF